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Abstract—Diverse applications including cyber security, social
networks, protein networks, recommendation systems or cita-
tion networks work with inherently graph-structured data. The
graphs modeling the data of these applications are large by nature
so the efficient processing of them becomes challenging.

In this paper we present imGraph, a graph system that
addresses the challenge of efficient processing of large graphs by
using a distributed in-memory storage. We use this type of storage
to obtain fast random data access which is mostly required for
graph exploration. imGraph uses a native graph data model
to ease the implementation of graph algorithms. On top of it,
we design and implement a traversal engine that achieves high
performance by efficient memory access, distribution of the work
load, and optimizations on network communications. We run a
set of experiments on real graph datasets of different sizes to
asses the performance of imGraph in relation to other graph
systems. The results show that imGraph gets better performance
on traversals on large graphs than its counterparts.

I. INTRODUCTION

Over the past few years, managing graph-structured data
has gained significant attention in both industrial and research
communities (see, e.g., a survey [1]). This is due to the
emergence of modern applications whose data structure is nat-
urally represented as graphs in areas such as social networks,
transportation [2], biological networks and semantic webs. In
fact, the graph structure provides a flexible representation for
modeling highly-connected and dynamic data. In addition to
their structural complexity, the graphs handled in these fields
can have a very large size; for instance, the social graph of
Facebook contains more than 750 million active users and an
average friend count of 130. According to Bizer et al. [4],
the Web of Data has 31 billion RDF triples and 466 million
RDF links. Another example is Business networks mining
[10] which handles large scale networks consisting of several
thousand integration related and business process participants
with ten or hundred thousand relationships between them as
well as business participants relationships to social media
networks.

The managing and processing of these large graphs can be
very challenging because the huge amount of data causes a
high I/O latency. As data access on graphs generally requires
random data access (no locality), there is a high number of I/O
operations in traversal processing. Although memory caching
can be used to reduce the number of I/O operations, the no
locality of data access on graphs reduces the efficiency of
those caches on large graphs because the cache contents will
be frequently modified so the database engine will have to
perform several data reads on disk.
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Fig. 1. imGraph overview

Having these challenges in mind, we introduce a new graph
database system called imGraph 1. We have considered the
random access requirement for large graphs as a key factor on
deciding the type of storage. Then, we have designed a graph
database where all data is stored in memory so the speed of
random access is maximized. However, as large graphs can
not be completely loaded in the RAM of a single machine,
we designed imGraph to store graph data in the memory of a
group of machines. Furthermore, we implemented on imGraph
a graph traversal engine that takes advantage of distributed
parallel computing and fast in-memory random access to gain
performance.

The rest of the paper has the following organization.
In Section 2, we outline the design of imGraph, section 3
describes its graph data model, section 4 describes its core
engine, section 5 describes its traversal engine, section 6
presents a brief description of other graph systems, section
7 presents the results of experiments, and section 8 includes
conclusion of our work and a short description of future work
directions.

II. AN OVERVIEW OF imGRAPH

Figure 1 illustrates a high level architecture of imGraph. On
the bottom of the stack we have a Memory storage module,
which is a distributed in-memory key/value store that can be
accessed from any machine of the cluster. The network com-
munication module provides an efficient infrastructure which
allows an efficient synchronous and asynchronous exchange of
messages between the machines of the cluster.

On top of the Memory storage module, we have the Graph
Data Model that represents graphs in their native form; this
bring us the possibility to associate information to vertices
and edges in a more natural way. The Graph Data Model is
explained in more detail in section 3. The next layer contains
the core engine of the database which provides the basic
operations on graphs and transactional support. This layer
also provides an optimized graph traversal functionality which
allows an efficient execution on-line queries; this traversal

1imGraph will be open sourced soon
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functionality is detailed in section 4. Finally, on top of the
stack there is a set of Java APIs which allow external clients to
perform queries and data modifications on the graph database.

III. THE GRAPH DATA MODEL

imGraph models a graph using the native graph data model,
i.e. a set of vertices interconnected by edges. Formally, a graph
is denoted by g = (V,E, µ, v) where V denotes a finite set
of vertices, E ⊆ V × V a set of edges, µ : V → L a vertex
labeling function assigning each vertex an attribute from L,
and v : E → L and edge labeling function.

The basic data structure in imGraph is called cell which
has a unique global id in the cluster; each cell has a map of
key/value pairs to store properties. imGraph models vertices,
edges and hyperedges as subclasses of a cell. Then, edges are
cells containing a pair of cell ids pointing to two vertices, a
type (IN, OUT or UNDIRECTED), and a label; vertices are
cells that contain an indexed list of edges; hyperedges are cells
containing an indexed list of vertex ids. Cells are stored in the
key/value memory storage using its cell id as the key, and the
cell itself as the value. imGraph determines the machine where
each cell is stored using the value of a hash function of the cell
id. Figure 2 shows how the vertices of a small graph would
be distributed in the memory of a cluster of 3 machines.

IV. THE CORE ENGINE

The basic retrieval of vertices and edges is performed using
the global unique numeric identifer (id) that each cell (vertex or
edge) has. imGraph also supports the retrieval of data through
indexes of edges and vertices based on their properties. The
core module also provides a set of APIs to manipulate the
objects representing vertices and edges, imGraph enforces that
every data modification must be enclosed in a transaction. The
imGraph transactions prevent dirty and non-repeatable reads
by using thread local transaction contexts. However, imGraph
currently offers no locking mechanism to control concurrent
writings on the same data.

V. ON-LINE QUERY PROCESSING

On-line queries can be processed on imGraph using the ba-
sic data manipulation and retrieval Java APIs or the Blueprints
interfaces2. However, when we are working with large graphs,
the execution time of queries implemented with the basic
APIs is increased considerably because of the high number of
messages that are exchanged among the machines. Therefore,
imGraph provides a traversal engine which is designed to

2Blueprints is a generic Java API for graph databases developed by
Tinkerpop (https://github.com/tinkerpop/blueprints/)

increase local processing of nodes so that the number of
messages exchanged will be reduced.

A. The basic traversal processing

Algorithm 1 Modified breadth first search algorithm

Input: search message, search criteria
Output: Path for the searched vertex if any
1: input vertices := search message.vertices
2: for all start vertex in input vertices do
3: if start vertex satisfies search criteria then
4: RETURN path(start vertex)
5: end if
6: add start vertex to queue
7: end for
8: cur depth := input vertices.depth
9: while queue is not empty do
10: vertex := pop(queue)
11: if vertex.depth > cur depth) then
12: for all m in cluster machines do
13: msg.vertices := remote queue[m]
14: send msg to m
15: end for
16: cur depth := vertex.depth
17: end if
18: add vertex to explored
19: for all neighbor of vertex s.t. neighbor /∈ explored∪queue

do
20: if neighbor is local then
21: if neighbor satisfies search criteria then
22: RETURN path(neighbor)
23: end if
24: add neighbor to queue
25: else
26: add neighbor to remote queue and explored
27: end if
28: end for
29: end while
30: for all m in cluster machines do
31: msg.vertices := remote queue[m]
32: send msg to m
33: end for

A traversal executed using basic retrieval APIs of imGraph
causes high network traffic because the machine executing the
traversal has to retrieve vertices stored in other machines. This
high network traffic added to the serialization/deserialization
costs results in poor performance. Furthermore, the resources
of the machine running the traversal could be exhausted while
running a traversal on a large graph. Then, we decided to make
each machine traverse only the vertices stored in its memory.
The machines will exchange messages only to coordinate the
portions of the traversal that each machine will perform.

As we distribute the traversal among the machines of the
cluster, we need a centralized coordinator process to start and
stop the traversal processing, and collect the results of the
sub traversals. Then, we added a new type of server process
to perform these tasks, the new process is called traversal
manager. In an imGraph system we can have as many traversal
manager processes as we want so they don’t represent a single
point of failure; traversal managers can be executed on any
machine of the cluster or in a dedicated machine. However,
it must be noted that the traversal manager process and the
imGraph cluster machine process runs in different JVMs.



The traversal process starts when a traversal manager
receives a query request. Since the traversal manager does not
have direct access to graph data, it sends an asynchronous
search request message to the machine that stores the start
vertex indicating the start vertex id and the query specification.
All search request messages have a unique message id that is
used later to determine if all messages have been processed, i.e.
to determine when the traversal has been completed. In fact, the
traversal manager stores a pending searches list containing the
search request message ids that have not yet been processed.

When the cluster machine receives the message from the
traversal manager, it initiates the traversal by executing a
modified breadth first search algorithm (Algorithm 1) starting
from the received vertex id; we have chosen the BFS algorithm
as a basis because it allows us to better distribute the traversal.
The algorithm only explores the nodes that are stored in the
local memory, the vertices located in remote vertices are saved
for posterior processing in search request queues; the algorithm
classifies the remote vertices according to the remote machine
where they are stored. The processing of remote vertices
consists in sending search request messages to the remote
machines so that they can start a new portion of the traversal.
To prevent overloading the network, the algorithm does not
send a search request message for each remote vertex. Instead,
it groups all the remote vertices belonging to a search depth
before sending them; then, it sends asynchronously a single
search request message containing the query specifications and
the ids of the remote vertices to be explored. When a remote
machine receives a search request message, it executes a new
instance of the modified BFS algorithm based on the query
specifications and starting on the vertex ids contained on the
message. When the processing of the modified BFS algorithm
is completed, an asynchronous search response message is sent
to the traversal manager containing the id of the search request
message that triggered the algorithm, the paths found and the
ids of new search request messages sent during the execution
of the algorithm. These new request message ids are sent so
that the traversal manager will knows that it must wait for
responses to them.

Upon the reception of a search response message, the
traversal manager drops the corresponding element of the
pending searches list, adds the ids of the new search requests to
the pending searches list and stores the paths found. The query
processing is completed when one or more paths satisfying
the query criteria are found or when the pending searches
list is empty. Then, the traversal manager sends back a query
response to the client and broadcast a stop search message
so the machines of the cluster stop processing search request
messages for this query and release resources.

Figure 3 shows the flow of messages among the machines
of the cluster when a traversal is processed. The flow starts
with a traversal request message sent from the client to the
traversal manager. Then, the traversal manager sends and
search request message to Machine B which in turn sends
search request messages to machines A and C. Then, machines
A and C process the received request messages, machine A
sends an additional search request message to machine C.
Later, all the machines send response message to the traversal
manager, one response message is sent for each request mes-
sage processed. Finally, the traversal manager sends a traversal

Fig. 3. Flow of messages during a traversal in imGraph

response to the client.

B. Distributed Traversal by means of virtual edges

Let’s consider a case where a vertex n1 stored in machine
A has a 1-hop neighbor n5 located in a remote machine B
which in turn has a 1-hop neighbor n8 located in machine
A. If we are going to traverse this graph starting from vertex
n1, a search request message will be sent to machine B to
explore the vertex n5; then, the machine B will send again
a message to machine A for the vertex n8. Suppose that we
are looking for vertex n8, in this simple case two messages
will have to be sent to found it. It would have been good that
the traversal algorithm could recognize that n8 is located in
machine A before sending a search request to machine B so
that it can explore n8 and machine B will not need to send back
a message to machine A for that node. Then, the number of
sent messages would have been reduced to one with a related
improvement on performance.

In order to address this type of situations, we redefine the
imGraph’s data model by introducing the concept of virtual
edge. Then, we denote a graph by g = (V,E,W, µ, v) where
V denotes a finite set of vertices, E ⊆ V × V a set of edges,
W ⊆ V × V a set of virtual edges, µ : V → L a vertex
labeling function assigning each vertex an attribute from L, and
v : E → L and edge labeling function. The set W is defined
as follows: W = {(v1, v2) ∈ V × V | ∃(v1, vr), (vr, v2) ∈ E :
m(v1) = m(v2) ∧ m(v1) 6= m(vr)}, where m : V → MC
is a function mapping a vertex to the machine of the cluster
where it is stored, and MC denotes a set of machines. Then,
for the case described in the previous paragraph, there is a
virtual edge between n1 and n8; this virtual edge will allow
the algorithm to recognize that n8 can be reached from n1, so
it can be explored, before sending a message to explore n5.

With the help of virtual edges we improved the perfor-
mance of the traversal processing by making two adjustments
in the modified BFS algorithm described in the previous
subsection. The first adjustment consisted in getting the local
neighbors of a vertex from the sets of edges and virtual edges
so that the algorithm will be able to find more reachable local
vertices, i.e. a single instance of the algorithm will be able
to explore more vertices. Therefore, the number of running
instances of the algorithm required to complete the whole
traversal will be reduced, this in turn will reduce the traversal
execution time. The second adjustment consisted in including
in the search request message the ids of the vertices reached
through virtual edges. By doing this, the remote machine that
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Trinity Yes Yes Yes Yes Yes No

imGraph Yes Yes Yes Yes Yes Yes

receives this message will know that the machine that sent
the message is already aware of those vertices so the remote
machine will not send a search request to explore them. This
adjustment helps to reduce the number of messages that have
to be sent to complete the traversal and as a consequence it
improves the traversal performance. The implementation of
virtual edges on the traversal engine represents a reduction
of the processing time of approximately 40 %.

VI. RELATED WORKS

In this section we describe some graph systems currently
available. This description will be done considering six factors
based on the ones described by Shao et al. [12]. First, query
processing on dynamic graph; second, the use of native graph
representation that facilitates the implementation of graph
algorithms; third, distributed storage; fourth, distributed paral-
lel query processing; fifth, memory based exploration, which
allows fast random access; fifth, transaction and index support.
Table I displays the recently described factors for imGraph
and other graph systems we will describe in the following
paragraphs.

Neo4J3 is an open source graph database that uses a graph
model for data representation, provides full ACID transaction
support, indexing and query language; it uses a custom disk-
based native storage engine. Neo4J doesn’t provide support
for distributed storage and the processing power of Neo4J is
limited to the computation power of a single machine.

Titan4is an open source graph database that uses a graph
model for data representation and supports full ACID trans-
actions, indexing and a query language. The data storage
can be distributed across a cluster of machines using the
distributed storage backends Apache Cassandra or Apache
HBase. Although the storage can be distributed, Titan does
not implement parallel processing for queries.

GBase [7] is a platform conceived to handle large static
graphs that uses the sparse adjacency matrix format as data
model. The graph data is loaded and automatically indexed
by storing compressed blocks in a distributed storage such as
HDFS of Hadoop or in a RDBMS. There’s a query execution
engine built on top of Hadoop that takes advantage of the
indexing made during the graph loading.

Trinity [12] is a graph system that has an approach similar
to imGraph. The graph is represented in its native form and is
stored in the RAM of machines belonging to a cluster in the
form of a key/value store. Trinity supports SPARQL language

3Neo4j. Home.http://neo4j.org, 2013
4http://thinkaurelius.github.io/titan/

for queries and provides a parallel computing engine that
process queries by sending asynchronous requests recursively
to remote machines. Although Trinity can handle dynamic
graphs, it does not provide transaction support or indexing.

VII. EXPERIMENTS

We have carried a set of experiments in order to compare
the time performance of imGraph with Neo4J version 1.8.2;
and Titan version 0.3. using an Apache Cassandra cluster
version 1.2.5 as backend storage in the remote mode (Titan
and the Cassandra cluster running on different JVMs).

A. Setup of experiments

The experiments were performed using four graph datasets:
soc-Epinions[9] (75K vertices and 508K edges), a directed
graph representing the who-trust-whom online social network
of a general consumer review site Epinions.com; youTube[14]
(1.1M vertices and 3M edges), an undirected graph repre-
senting the Youtube social network; ukgraph [5], [15] (4.5M
vertices and 66M edges) a directed graph representing a
segment of a snapshot of the web network in UK; and soc-
LiveJournal [3], [8] (4.8M edges and 69M edges) a directed
graph representing LiveJournal, a free on-line community with
almost 10 million members with a significant fraction highly
active members.

We performed three types of experiments: read tests con-
sisting in 400 sequential retrieval of vertices; write tests con-
sisting in 200 sequential additions of vertices, where each new
vertex has two edges to already existing vertices; and graph
traversal tests grouped in 4 traversal test configurations. Each
traversal consisted in finding a path between two given vertices
considering a determined maximum number of hops. The 4
traversal test configurations are: Traversal-3H, 200 traversals
between two vertices at maximum 3 hops; Traversal-4H, 200
traversals between two vertices at maximum 4 hops; Traversal-
Path-3H, 200 traversals at maximum 3 hops between two
vertices having at least one path at 3 hops; and Traversal-
Path-4H, 200 traversals at maximum 4 hops between two
vertices having at least one path at 4 hops. Some traversals
of the configuration Traversal-3H and Traversal-4H could not
have a path at a specified maximum number of hops which
implies that the traversal will explore all the neighbors of
the start vertex at a determined maximum number of hops.
Neo4J traversals were executed using its Traversal Framework,
Titan traversals were executed using an implementation of
the BFS algorithm because Titan has no built-on traversal
functionality and imGraph traversals were executed using its
traversal engine.

All the experiments were performed on Amazon EC2 in-
stances of type m1.large running Ubuntu 13.04. Each m1.large
instance has 64-bit processor architecture, 2 vCPU, 4 ECU, 7.5
GB of memory and moderate network performance 5. Neo4J
tests were performed in only one Amazon EC2 instance, Titan
and imGraph tests were performed in two configurations: one
running on a 5 machine cluster and the other running on a
10 machine cluster. For imGraph tests, we run the traversal
manager on a separate machine and for Titan tests, we run

5Amazon EC2 instance types. http://http://aws.amazon.com/ec2/
instance-types/#instance-details, 2013
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the Titan system on a machine not belonging to the Cassandra
cluster.

B. Results

The figure 4 shows the average execution time of the read
tests and figure 5 shows the average execution time of the
write tests; both figures show results for the five configurations
and the four datasets, the average time is shown in the Y-
axis using a logarithmic scale for better displaying. Regarding
the read tests, imGraph has lower performance than the other
databases because of the serialization/deserialization costs of
getting remote vertices. We can also see that the write time
of imGraph is higher than the others due to the calculation of
virtual edges of the affected vertices.

Figures 6, 7, 8 and 9 show the results of the traversal tests
performed on the four datasets. In all the figures we plot on the
Y-axis the average traversal time for the five run configurations
described in the previous section, in all the figures the time
is represented in logarithmic scale. We couldn’t perform the
traversal tests at 4 hops (Figures 8 and 10) on Titan using
the soc-LiveJournal dataset because we got out-of-memory
exceptions; i.e, the amount of memory required by the BFS
algorithm to explore this graph at 4 hops exceeded the capacity
of the machine running the Titan system.

If we compare the results of imGraph and Neo4J we can
observe that Neo4J is faster than our implementation only
when the smallest dataset (75K vertices) is tested; when larger
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Fig. 6. Performance results of the Traversal-3H configuration

datasets are tested, imGraph gets better results than Neo4J. We
observe that Neo4J’s performance is more negatively affected
by the large graphs than imGraph’s performance. When the
graph is not too large, Neo4J is able to load a considerable
part of it into the cache so the traversal will be done almost in
memory. However, if the graph is larger, Neo4J will be able
to load in the cache only a small portion of the graph so it
will have to read from the disk more frequently.

Regarding Titan and imGraph, both using a distributed
storage, we can observe that imGraph performs better in all
the traversal configurations for all the datasets. In this case,
imGraph’s distributed parallel computing makes the difference.
As Titan traversals run on a single machine there is a con-
siderable amount of network communication to obtain graph
data; furthermore, the computation power of Titan is limited
to the capacity of a single machine. Another factor that makes
imGraph perform better is the faster random access provided
by the imGraph’s in-memory storage. Although Cassandra
provides a caching functionality, this cache cannot store all
data from a large graph so many disk reads will be required.

Now, let’s analyse the performance results of the two
run configurations of imGraph, i.e. imGraph running on a 5
machine cluster, and imGraph running on a 10 machine cluster.
The average traversal time for both configurations are very
close when the soc-Epinions, youTube and ukgraph datasets
are tested. However, the traversal results obtained with the
soc-LiveJournal dataset show a remarkable difference in per-
formance between the imGraph run configurations; we can see
that the configuration of 10 machines performs considerably
better than the configuration of 5 machines. This difference
suggests that the messaging between the machines of the
cluster is not a bottleneck in the traversal, i.e. the higher
number of exchanged messages in the 10 machine cluster
doesn’t affect considerably the time performance. In contrast,
the better performance of the 10 machine cluster suggests that
the execution of graph searches in each machine is a critical
factor of the performance. In fact, the searches belonging to
a traversal are distributed among the machines of the cluster
according to the storage distribution; then, a machine of the 5
machine configuration performs more graph searches during a
traversal because its memory stores more vertices.
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VIII. CONCLUSION

In this paper we propose a distributed graph database called
imGraph whose most remarkable characteristic is the storage of
all graph data in the memory of machines belonging to a clus-
ter. This characteristic brings the possibility of performance
optimizations. Indeed, we have implemented a graph traversal
engine that takes advantage of this characteristic to achieve
high performance. The experiments we have run shown that
the imGraph’s traversal performs better than the traversals of
other graph systems.

Regarding future work directions, imGraph could be im-
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proved by adding a mechanism for storing data on disk as
well as a faster mechanism of serialization/deserialization to
improve readings. An analysis of memory consumption and
the evaluation of data compression techniques could also be
done as well as tests on graphs having more than 1 billion of
vertices. Another future work direction is the improvement of
the flexibility and usability of the traversal engine by allowing
the user to provide rich traversal specifications through query
languages [13], [11]. The implementation of vertex-based off-
line graph analytic functionalities on top of imGraph could
also be considered.
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