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Figure 1: Within a data center OS, all resources are
unified and different frameworks compete with each
other for the allocation of the resources with regards
to the tasks they execute.

Big Data analytics have reached a cer-
tain level of maturity in both indus-
try and science. Within the con-
text of Big Data distributed process-
ing frameworks, iterative machine
learning algorithms are usually imple-
mented through the Bulk Synchronous
Parallel (BSP) paradigm. This is
namely the case for Twister, Haloop and
ScalOps.

From the recent evolutions in data cen-
ters towards the unification of comput-
ing resources, we are witnessing the
rise of resource managers such as Mesos,
Yarn, Omega and Corona. These define
the concept of data center operating system
as illustrated on Figure 1.

Stale Synchronous Parallelism (SSP) for convergent and iterative
algorithms

Coming back to iterative-convergent tasks, that means that a BSP worker running on a machine
is not isolated anymore from other frameworks in the cluster. This leads to situations where a
worker might temporarily be overloaded with other tasks, identified as a straggler by [2, 3]. They
show that the BSP performance dramatically suffers in the presence of stragglers and propose
the Stale Synchronous Parallel programming (SSP) as illustrated on Figure 2. In this paradigm the
synchronization barrier is relaxed in each super-step and faster workers continue to iterate on
stale versions of the model stored in a parameter server. Convergence and correctness of the
algorithm are however still guaranteed for iterative convergent algorithms [2].

Figure 2: In Bulk Synchronous Parallelism (left), workers synchronize their update to the model
after each clock. Under Stale Synchronous Parallelism (right), workers access the updates of
their co-workers in a best-effort mode within the bounds of staleness.

Distributed Frank-Wolfe under SSP

The Frank-Wolfe algorithm [4] is a simple yet powerful algorithm targeting the following opti-
mization problem :

min
x∈D

f (x), (1)

where the function f is convex and continuously differentiable, and the domain D is a compact
convex subset of Rn. Algorithm 1 shows the basic Frank-Wolfe algorithm.

Algorithm 1 Frank-Wolfe algorithm
1: Let α(0) ∈ D
2: for k = 0, 1, 2, . . . do
3: s(k) = argmins∈D 〈s,∇f (α(k))〉
4: α(k+1) = (1− γ)α(k) + γs(k),

5: end for
6: stopping criterion : 〈α(k) − s(k),∇f (α(k))〉 ≤ ε

In [1], the authors propose a distributed version of this
algorithm to solve a separable variant of the problem
stated in Eq. (1) :

min
α∈Rn

f (α) s.t. ‖α‖1 ≤ β, (2)

where f (α) = g(Aα) for an atom matrix A =
[a1, . . . ,an] ∈ Rd×n. We consider the column-wise par-

titioning of A across a set of N worker nodes V = {vi}Ni=1. A node vi is given a set of columns
denoted by Ai such that

⋃
iAi = A and Ai

⋂
Aj = ∅ ∀i 6= j. This formulation is tightly related

to optimizing over an atomic set as mentioned in [5].

The algorithm proposed in [1] relies on three steps : a first one that computes locally the best
atom si and broadcast it to its co-workers, a second one that elects the best atom among all those
candidates and a third one where each worker updates the parameter α given the best atom at
current iteration.

Algorithm 2 Stale Synchronous Distributed Frank-Wolfe Algorithm

1: Let α(0)
i = 0, ci = 0 for all worker node vi ∈ V , clock = 0

2: for all worker node vi ∈ V in parallel do
3: repeat
4: if ci ≤ clock + s then
5: α(ci) = getParameter()

6: s(ci) = argmins∈Di
〈s,∇f (α(ci))i〉

7: α(ci+1) = (1− γ)α(ci) + γs(ci), where γ = 2
k+2 or obtained via line-search

8: updateParameter
(
i, ci,α

(ci+1)
)

9: ci = ci + 1

10: clock = min {ci}
11: else
12: wait until ci ≤ clock + s

13: end if
14: until 〈α(ci) − s(ci),∇f (α(ci))〉 ≤ ε for all worker nodes vi
15: end for

We consider a setting where stragglers randomly appear among the workers. Thus, an unbal-
anced partitioning like the one proposed in [1] is not well suited and dynamic load-balancing
scheduling policies are costly to obtain. We study the asynchronous setting where each worker

can use a locally optimal atom in order to update its current possibly out-of-date, but with
bounded staleness, version of the global solution. Our claim is that avoiding the synchronized
update step can help the algorithm to be tolerant to the straggler problem without sacrificing
convergence rate. Algorithm 2 formalizes the use of the SSP paradigm to reach our goal.

Application : LASSO regression

In this work we focus on the LASSO algorithm [7]. LASSO is a linear regression method for
solving the following sparse approximation problem :

min
α∈Rn

1
2 ‖y −Aα‖

2
2 s.t. ‖α‖1 ≤ β, (3)

where we seek to approximate the target value yi for the training point i by a sparse linear
combination of its features aij, using the same small number of features for all data points.

Duality Gap and Line Search

For the LASSO problem, the duality-gap is fast to compute. Given that s is a minimizer of the
linearised problem at pointα, the duality gap is given by 〈α−s,∇f (α)〉. This quantity only de-
pends on information that is available at each worker. Moreover, the solution to the line search
problem can be obtained analytically with nearly no additional computational cost. Indeed, the
optimal step-size is obtained by solving :

γ∗ = argmin
γ∈[0,1]

f
(
α(k) + γ(s(k) −α(k))

)
= max

(
0, min

(
1,
〈α− s,∇f (α)〉
‖A(s−α)‖22

))
. (4)

The optimal step-size involves the duality-gap value and ‖A(s − α)‖22 which can be evaluated
efficiently (becauseA(s−α) is available as it is involved in the duality-gap computation).

Preliminary results

The following preliminary results were obtained on a 5-nodes cluster running Apache Flink
with our SSP implementation.
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Figure 3: Convergence of the objective function in the primal with workload on the cluster.

We generate sparse uniform random matrices of dimensions 1.000× 10.000 with sparsity ratio of
0.001 and a random vector α∗ such that ‖α∗‖0 = 100. Figures are averages over multiple runs of
the same experiment.
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Figure 4: Distribution of the coefficients αi after 250 iterations.

Future directions

The results shown here are encouraging. They show that the Distributed Frank-Wolfe algorithm
under SSP empirically converges and is faster than its BSP counterpart. This is especially the
case when random nodes in the cluster are under charge, which mimics the setup of a data cen-
ter OS. Our future direction of research includes the theoretical proof for the convergence, the
study of the more general context of optimizing over atomic set, the study of the sparsity of
the iterates (away steps might be useful) and the comparison of our solution with other asyn-
chronous approaches like [6, 8].
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