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In this paper, we introduce a novel method for graph indexing. We propose a hypergraph-based model

for graph data sets by allowing cluster overlapping. More precisely, in this representation one graph can

be assigned to more than one cluster. Using the concept of the graph median and a given threshold, the

proposed algorithm detects automatically the number of classes in the graph database. We consider

clusters as hyperedges in our hypergraph model and we index the graph set by the hyperedge

centroids. This model is interesting to traverse the data set and efficient to retrieve graphs.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Generally, an image retrieval system (IRS) composed of two
parts. The first part consists of describing the image: this description
may be textual, in this case the image is associated with a set of
words (annotations) that describe it. These techniques are widely
used in the internet IRS (e.g. google images1). In these systems, the
set of words that describes the image is potentially extracted
automatically from the web page that contains the involved image,
such as the file-name of the image, the page title, etc. These words
do not always reflect the content of the image, hence the use of a
manual annotation of images. Given the skyrocketing number of
available images, such an annotation is very expensive. To overcome
this problem, some IRS use a visual description of the image. This
use pattern recognition techniques to extract important features
that will be used as a description of the image in question. This
technique is called content-based image retrieval (CBIR). During the
last decade, several CBIR systems have been proposed [12,34].

The second part of an IRS is indexing descriptors. The indexing
consists of organizing the image descriptors to ensure access as
quickly as possible to the relevant images. This part is crucial in any
system of information retrieval, particularly the image retrieval. In
fact, indexing avoids the sequential search in an image database by
direct access to the block (a reduced set) containing the images
most similar to the query image. Several indexing methods are used
in a robust and efficient way for image retrieval such that methods
ll rights reserved.
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based on data structures (e.g. B-tree, Bþ-tree, kd-tree) [3,11,29]
and statistical learning [6].

Almost all systems of image retrieval use a statistical repre-
sentation (feature vector) of the images. The choice of vectors is
influenced by their ease of handling (i.e. computation of dis-
tances) and the possibility of navigation in the vector space.
Indeed, some indexing methods use the principle of partition the
Euclidean space to index the vectors representing the images.
However, in pattern recognition, the image representation can be
broadly divided into statistical and structural methods [7]. In the
former, the document is represented by a feature vector, and in
the latter, a data structure (e.g. graphs or trees) is used to describe
objects and their relationships in the document. The structural
representation (e.g. graph) is more powerful than feature vector
in terms of representational abilities [22]. The graph structure
provides a flexible representation such that there is no fixed di-
mensionality for objects (unlike vectors), and provides an efficient
representation such that an object is modeled by its components
and the existing relations between them.

So it is interesting to develop an image retrieval system where
images are represented by graphs. Such a system will also have two
parts: the first is to extract the graph representing the image, while
the second part is to index these graphs. The first part is already
well developed in the literature [21]. Nonetheless, only few works
have focused on indexing graphs for image retrieval systems. But,
this is not surprising because the representability power of graphs
cannot fully be exploited due to a lack of computational tools, as it
is the case for statistical representation. Recent approaches tend to
bridge the gap between the structural and statistical representation
by embedding (explicitly [10,15,20,26], implicitly [13,16] or spec-
trally [24,25,28,38]) graphs into a feature space. However, doing
ge retrieval for graph-based representation, Pattern Recognition
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Fig. 1. Example of a hypergraph.
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that we loss the structural links and there is no equivalence relation
between the two representations. Another way is to use directly the
graph representation and to decompose it into more elementary
structures and to address them with a multidimensional data
representation method. Most of the works using directly graphs
are developed in an escalation of the structures of chemical
molecules [36]. In more generic works, we distinguish the Graph-

Grep [17] and gIndex [41]. Both methods are based on the use of a
sub-structure of each graph as its input index (index features). The
proper functioning of these works requires that the graphs are
labeled by discrete values. This is rare for graphs representing
images where the labels are generally continuous values that
quantify the local characteristics of an image. In addition, these
methods are space consuming since we have to store all frequent
sub-structures in the involved graph set.

In the present work, we address the problematic of graph
indexing using directly the graph domain. We provide a new
approach based on the hypergraph model. The main idea of this
contribution is first to re-organize the graph space (domain) into
a hypergraph structure. In this hypergraph, each vertex is a graph
and each hyperedge corresponds to a set of similar graphs.
Second, our method uses this hypergraph structure to index the
graph set by making use of the centroids of the hyperedges as
index entries. By this way, our method does not need to store
additional information about the graph set. In fact, our method
creates an index that contains only pointers to some selected
graphs from the data set which is an interesting feature, espe-
cially, in the case of large data sets. Besides indexing, our method
addresses also the navigation problem in a database of images
represented by graphs. Thanks to the hypergraph structure, the
navigation through the data set can be performed by a classical
traversal algorithm. The experimental results show that our
method provides good performance in term of indexing for tested
image databases as well as for a chemical database containing
about 35,000 graphs, which points out that the proposed method
is scalable and can be applied in different domains to retrieve
graphs including clustering, indexing and navigation steps.
2. Hypergraph

A hypergraph is a generalization of a graph, where edges can
connect any number of vertices. The hypergraph was defined by
Berge [4] and is defined as follow:

Let H¼ ðW,xÞ be a hypergraph, where W¼ fx1,x2,x3, . . . ,xng is a
finite set of vertices and x¼ fE1,E2,E3, . . . ,Emg is a family of subsets
of W. We have Eja|,

S
j ¼ 1,...,mEj ¼ W.

W is called the set of vertices, x is the set of edges
(or hyperedges) and 9W9 is the cardinality of H. An edge Ei

is represented by a line surrounding its vertices if 9Ei9Z2 (E1 in
Fig. 1), by a loop on the element if 9Ei9¼ 1 (E4 in Fig. 1), and by a
line joining the two elements if 9Ei9¼ 2 (E5 in Fig. 1). If 9Ei9¼ 2 for
all i, the hypergraph becomes an ordinary undirected graph. In a
hypergraph, two vertices xi and xj are said to be adjacent if there
exists an edge Ek, which contains the two vertices (xiAEk,xjAEk).
Two edges Ei and Ej are said to be adjacent if their intersection is
not empty. Every hypergraph has an incidence matrix (m�n) Aj

i

with m columns representing the edges and n rows representing
the vertices. The elements in A indicate the membership of
vertices to hyperedges as follows:

Aj
i ¼

1 if xiAEj

0 if xi =2 Ej

(

For example, consider the hypergraph H¼ ðW,xÞ shown in Fig. 1,
W¼ fx1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13g and x¼ fE1,E2,E3,
E4,E5,E6g. The cardinality of this hypergraph is 9W9¼ 13, the incidence
Please cite this article as: S. Jouili, S. Tabbone, Hypergraph-based ima
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matrix is defined as:

E1 E2 E3 E4 E5 E6

x1 1 0 0 0 0 0

x2 1 0 0 0 0 0

x3 1 0 0 0 0 1

x4 1 1 0 0 0 0

x5 0 1 0 0 1 0

x6 0 1 1 0 0 0

x7 0 1 1 0 0 0

x8 0 0 1 0 0 0

x9 0 0 1 0 0 0

x10 0 0 0 1 0 0

x11 0 0 0 0 1 0

x12 0 0 0 0 0 1

x13 0 0 0 0 0 1

Recently, the hypergraph has been used in the pattern recognition
domain, for object representation [25], similarity measures [8], and
object clustering [1,5,37].
3. Hypergraph-based model

It is important to organize the graphs in coherent sets to
facilitate later indexing. Such organization can be done with a
unsupervised classification technique. However, the use of classi-
fication for indexing requires changes in the strategy of classifiers.
Indeed, in traditional approaches of (un-)supervised classification,
an object o is always assigned to one and only one class c for
which the object o is more similar to the objects in the class c than
the objects in other classes. Obviously, this similarity is based on all
the characteristics of each object. In general, to classify an object
into one class among k classes; first the k distances between the
object and the k classes are calculated, then the object is assigned to
the class with the minimum distance. This strategy is retained even
if the differences between these distances is very low (see Fig. 2).
This assignment is determined by the fact that the distance d2

between o and C2 is less than the distance d1 between o and C1. In
this illustration, we see that the two distances d1 and d1 are very
similar, and the object has been assigned to C2. In the case where
the objects are graphs, we consider that this strategy can constrain
the indexing. Given a set of objects, the indexing is based on the set
of classes C ¼ fc1, . . . ,cng arising from a classical classification, the
search for similar objects to a query object or provides direct access
to the nearest class CI to or. Thus, retrieval of all objects similar to a
query or is limited to the objects belonging to CI, i.e. all other classes
are omitted. On the contrary, it is likely that objects do not belong
to CI are similar to or.
ge retrieval for graph-based representation, Pattern Recognition

dx.doi.org/10.1016/j.patcog.2012.04.016
dx.doi.org/10.1016/j.patcog.2012.04.016
dx.doi.org/10.1016/j.patcog.2012.04.016


Fig. 3. Illustration of the workflow of the proposed method.

Fig. 2. Illustration of an object classification.
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In the remainder of this paper, we propose a solution to this
problem based on the structure of the hypergraph. The idea is to
represent a set of graphs into a hypergraph structure where the
vertices correspond to graphs and the hyperedges correspond to
coherent graph sets (clusters).

Thus, in our work we assume that one graph can belongs to
several clusters, so we consider that the proposed hypergraph is
connected (1-edge-connected). Therefore, each graph Gi in the
proposed structure is assigned to DWðGiÞ clusters and each cluster
Cj contains DxðCjÞ graphs. However, a key problem in structuring
a set of graphs into a hypergraph is the determination of the
number of clusters (hyperedges) and the determination of related
graphs (similar graphs) that can be grouped as hyperedges. In this
perspective, we consider that the number of hyperedges is equal
to the size of a representative set, defined on the selection of the
most representative graphs into the whole set. We denote each
selected graph as a hyperedge centroid. The selection of these
graphs is similar to the problem of Prototype Selection [2,26,35].
Riesen et al. [26] enumerate some techniques to select prototypes
from a training set. These techniques require a specification of the
number of prototypes and there are no premises for determining
automatically this number. Therefore, if we are in a unsupervised
context where no information about the number of representative
graphs is available, this number will be determined empirically. In
this perspective, Spath [35] proposes an algorithm using leaders
and distance-based threshold where the number of selected proto-
type is inversely proportional to the selected threshold. However,
the Leader algorithm [35] is sensitive to the selection of the initial
prototype which is selected randomly among the input data.
To overcome this problem, we introduce a representative graphs
(hyperedge centroids) selection based on a peeling-off strategy. This
method can be viewed as an improvement of the Leader and the
K-Centers algorithms. After the selection of the hyperedge centroids,
we define the hypergraph structure by assigning each graph to the
corresponding hyperedges. Then the browsing and the retrieval of
the graphs will be transposed into the hypergraph structure.
4. Hypergraph-based indexing

In this section, we present the main three parts of our hyper-
graph model. Each part of the proposed method can be considered
as an independent contribution. In fact, we propose, first, an ex-
tension and an improvement of a well-known prototype selection
algorithm for the graph domain. Second, we introduce a procedure
to re-organize a set of graphs into a hypergraph structure by means
of the prototype selected in the first contribution. Finally, we present
a graph retrieval algorithm that use the new hypergraph structure.
In addition to classical retrieval, we show that our method can be
used for an associative retrieval purpose in which a given user can
explore and navigate within the graph data sets. Fig. 3 illustrates the
Please cite this article as: S. Jouili, S. Tabbone, Hypergraph-based ima
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working model of our method which can be described as follow:
starting from a set of graphs, the new prototype graph selection is
applied to select the most representative graphs of the whole set.
Then, the initial graph sets is organized into a hypergraph structure
by means of the prototypes. Finally, the hypergraph structure is used
for retrieval and exploring purposes.

4.1. Hyperedge centroids selection

As stated above, the hyperedge centroids selection is similar to
the Prototype Selection problem. Therefore, we aim to select a set of
graphs which capture the most significant aspects of a set of graphs.
In this purpose, we introduce an improvement for the Leader
algorithm [35]. The proposed algorithm proceeds as follows:
1.
ge
Select the median graph [40] Gm from the unassigned graphs
in the whole set of graphs S. Then the furthest graph Gpk

(which has not been previously assigned) to Gm, becomes the
centroids of the cluster Ck. In the first iteration, the graph Gpk

is
the initial selected prototype.
2.
 Distances of every unassigned graph giAS\fGpk
g are compared

with that of the last selected prototype Gpk
. If the distances

d(gi, Gpk
) and d(gi, gj ACk

) are less than a user-specified
threshold T, the graph gi is assigned to the cluster Ck with
the centroid Gpk

, and gi is tagged as assigned.

3.
 Recompute the median graph Gmk

of Ck, if Gmk
aGpk

, replace
Gpk

by Gmk
. If any replacements is done, go to the next step,

otherwise all gj are tagged as unassigned, 8gjACk, then return
to step 2.
4.
 While S contains an unassigned graphs return to step 1,
otherwise stop.

A first improvement consists in adapting the algorithm of the
leader in the space of graphs using the notion of median graph.
Then a new method of selecting the initial prototype has been
developed. In the algorithm of the Leader, the choice of the initial
prototype is done randomly, which affects the final result of
clustering (i.e. at each execution results vary). We chose the farthest
graph from the median of the whole set as the initial prototype of
the algorithm. This choice guaranteed, therefore, the stability of
results. A second improvement consists of providing a new iterative
selection of prototypes. In fact, as shown in the pseudo-code of the
algorithm, once the initial prototype is selected we consider all
graphs which have a distance to the prototype less than or equal
to a given threshold, in addition, the distance between them
retrieval for graph-based representation, Pattern Recognition
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Fig. 4. Illustration of the proposed model. (For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this article.)
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(the considered graphs) must be also less than or equal to the same
threshold. In contrast, the leader algorithm considers only the
distances between the prototype and each object (there is no
criterion on distances between objects).

Given a threshold T, the algorithm clusters the set of graphs
with an intra-class inertia (Ii) less or equal to T. This property is
performed on the step 2. In addition, this algorithm ensures the
selection of the prototypes which are given by the centers of the
resulted clusters. Furthermore, it guarantees a certain separability
between classes of one partition. By using an edit distance d,
we can formulate the between-class inertia (Ib) of a partition C
composed of two classes C1, C2 by the Ward [39] criterion:

IbðC1,C2Þ ¼
Z1 � Z2

Z1þZ2

d2
gc1 ,gc2

ð1Þ

where gci
is the centroid of the class Ci and Zi is the number of

members of Ci. The analysis of this formula shows that there is a
strong dependence between the interclass inertia and the cen-
troid. Indeed, we know in our case that the distance between two
centroids is higher than the threshold T and IirT .

4.2. The hypergraph-based representation

Let S be the whole set of graphs and P be the set of selected
prototypes P (P� S). Classical clustering techniques find for each
graph gAS\P its nearest neighbor piAP and add the graph to the
cluster Ci corresponding to the prototype pi. In fact, if a graph
g presents a similar distances to two prototypes pi and pj, g is added
to the cluster with the nearest prototype even though the difference
between the two distances is very minor. Moreover, the provided
clusters are disjoint and can be exploited for a retrieval task as
used in [27,30–32], but it will be difficult to find an algorithm for
browsing the whole set of graphs through disjoint clusters.

On the contrary, a hypergraph-based model allows the over-
lapping of clusters. Henceforth the clusters will be viewed as
hyperedges of hypergraph and the graphs as the vertices. First, for
each selected prototype pi a hyperedge hi is defined with a
centroid pi. Second, every hyperedge is defined as follows : each
graph gAS\P is added to the hyperedges with the nearest
prototypes to g (their distances to g is less than the threshold
T used in the previous algorithm). From this definition, we can
conclude the following theorem:

Theorem. Let d(.,.) be a metric graph distance and let H be the

hypergraph generated with a given threshold T. If a graph g is shared

by two hyperedges hiAH and hjAH with the centroids pi and pj,
respectively, then Todðpi,pjÞo2� T.

Proof. Let P be the set of selected prototypes, so

8pi,pjAP, dðpi,pjÞ4T ð2Þ

Since the distance between graphs is metric, then from the
triangular inequality:

dðpi,pjÞrdðpi,gÞþdðg,pjÞ ð3Þ

We know that gAhi and gAhj, so

dðpi,gÞoT ð4Þ

and

dðg,pjÞoT ð5Þ

As the threshold T and the distances are positive, from (3)

and (4) we can write:

dðpi,gÞþdðg,pjÞo2� T
Please cite this article as: S. Jouili, S. Tabbone, Hypergraph-based ima
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which indicates (from (3)) that,

dðpi,pjÞo2� T ð6Þ

Finally, by combining (2) and (6), we find

Todðpi,pjÞo2� T: &

This theorem shows that if the used graph distance is a metric,
the overlap is achieved only between neighbouring hyperedges.
Specifically, the hyperedges, that share common graphs, have
nearby centroids. This property provides an interesting semantic
aspect of the method which can be summarized in the following
formula: ‘‘When a graph sharing information with two (or more) close

clusters, it must be assigned to all these clusters’’. Obviously, this
theorem is not always valid if the graph distance is not metric.

Fig. 4 illustrates our motivation. In the leftmost part of the
figure, we suppose that d1 and d2 are less or equal than T, so the
graph g1 shares some information with p1 and p2 (information are
illustrated in colors). With the hypergraph model, we will be able to
assign g1 to the both hyperedges h1 and h2. The rightmost part
of Fig. 4 describes how two hyperedges (clusters) can overlap with
one graph in common. Here, DWðg1Þ ¼ 2 and Dxðh1Þ ¼Dxðh2Þ ¼ 2.

Once all hyperedges are defined from the graph set, we
recompute, for each hyperedge, the median graph which will be
the new centroid of the hyperedge. The aim of this step is to
update the hyperedge centroids and to maintain as much infor-
mation as possible about the graphs in the corresponding hyper-
edge. We choose the median graph to define the centroid of a
cluster because, unlike the generalized median graph and the
minimum common super-graph [9], it needs less computation
time. We also use this technique when adding new graphs in the
database. Specifically, each new graph gn is added to the hyper-
edges with centroids near to gn (their distance to gn is less than
the threshold T used above). Then, we change the centroid of each
affected hyperedge by the new median graph. The hyperedges
affected by the update of centroid are those where the graph gn

is added.

4.3. Image retrieval

Smeulders et al. [34] define three paradigms in the image
retrieval according to the user’s objectives:
�

ge
Associative retrieval: Users of associative retrieval have not
really defined goal. The objective of this image retrieval paradigm
is to help users to explore the image database. Associative
retrieval often involves the refinement of all the images pre-
sented initially to the user, via interactions.

�
 Target retrieval: This paradigm regards the users who aim to

retrieve a specific image, such as finding a picture of a specific
object in a museum collection.
retrieval for graph-based representation, Pattern Recognition
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Fig. 5. Illustration of our retrieval method. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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�
 Category retrieval: This paradigm consists of retrieving the
maximum amount of images that belonging to a specific class
defined by the user. It may correspond to the case where the
user has an example (image) and looking for other images of
the same class. Categories can be derived from tags or from the
database using adequate similarity measures.

Regarding graphs, querying a set of graphs consists usually of
finding the most similar graphs to a given query. This retrieval
process sorts the distances between the query and the graphs of
the database in an ascending order. This type of retrieval corre-
sponds to the second paradigm of Smeulders et al. [34] when the
user aims to find a specific image (represented by a graph). In this
case, the desired image is the image represented by the closest
graph to the graph query. Moreover, the classic interrogation of a
set of graphs corresponds also to the third paradigm of Smeulders
et al. [34]. The user aims to look for the most similar images
(represented by graphs) to its query. Nevertheless, the ubiquity of
noise in the images do not promote the use of classical querying
of graphs for category retrieval. Indeed, the noise causes changes
in the corresponding graphs which often leads to false positive
results. In the literature, some authors [27,30–32] consider this
problem as a consequence of the lack of efficient exploitation of
the distribution of distances between graphs. Indeed, to improve
the retrieval performance of category, some works (e.g. [27])
propose some retrieval techniques based on clustering of graphs
to fully exploit the distribution of distances. In these works, similar
images to the query are retrieved in the cluster closest to the query
image rather than searching into the entire database. This requires
a preliminary phase of clustering of the image database.

In the same vein, we introduce a procedure that involves the
proposed hypergraph model. The main idea is to find the nearest
centroid (among all hyperedge centroids) to a given query. Then,
we look for the most similar graphs within the hyperedge which
it centroid is the most similar to the query. We can describe the
retrieval procedure into the hypergraph model as follows:
2 The nearest images to an image are into the hyperedges containing the
1.

image i.

P
(2
For a query graph gq, compute the set of distances between gq

and each hyperedge centroid.
lease cite this article as: S. Jouili, S. Tabbone, Hypergraph-based ima
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2.
ge
Initialize to empty the set R¼ | of the retrieved graphs.

3.
 Get the nearest hyperedge centroid pi to gq. Let hi be the

hyperedge with the centroid pi.

4.
 Retrieve the set R¼R [ fgjg containing the most similar

graphs gj to gq, where gjAhi.

5.
 If the number of retrieved graphs is not sufficient or the

desired graph is not found, go to the next step. Otherwise,
end the algorithm.
6.
 Get pj the next closest centroid to gq and hj the hyperedge with
the centroid pj. Return to Step 3 by considering the next
hyperedge (hj), i.e. hi’hj.

Fig. 5 shows an illustration of this retrieval method. Indeed, for
a given query (Fig. 5(a)), we start by identifying the nearest
centroid (Fig. 5(b) and (c)). Then, the retrieval is achieved in the
hyperedge containing this centroid (Fig. 5(d)). In this example, we
consider that the response to the query is satisfied by the images
of the first hyperedge (red). Moreover, if this was not the case, the
algorithm will retrieve also the images in the second hyperedge.

Our contribution can also be used in an associative retrieval.
We recall that this paradigm of image retrieval consists of helping
users to explore an image database. To navigate into the image
database, we use a technique of modified depth-first traversal
of the hypergraph. Our method consists on using the centroids
of hyperedges as the start points of navigation. The user then
chooses the hyperedge to explore by selecting the corresponding
centroid. Then, the navigation is a depth-first traversal of the
hypergraph. This traversal corresponds to a visit of the images
belonging to connected hyperedges. It should be noted here that
the traversal of the hypergraph depends on the user’s choice.
Indeed, at one stage ei of navigation, the traversal is defined from
an image im chosen by the user. Thus, in the next step eiþ1, the
explored part of the hypergraph corresponds the nearest images
to im.2 Specifically, the navigation of the hypergraph is achieved
through a graphical user interface (GUI). In this interface, the user
retrieval for graph-based representation, Pattern Recognition
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Fig. 6. A navigation GUI.
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makes his traversal from the hypergraph by clicking on the
images that interest him. Fig. 6 illustrates a navigation interface
where the hyperedges are represented by ellipses that overlap. In
this figure, the user selects the drop cap with the letter D, by
clicking on the adjacent initials he is able to explore a part of the
database related to its query. The images in the center of each
hyperedge are the centroids.
5. Experimental results

5.1. Graph similarity measure by means of node signatures

Before going ahead on the experimental parts, let us recall how
the similarity can be computed in the domain of graphs. Similarity
or (dissimilarity) between two graphs is almost always referred as a
graph matching problem. Graph matching is the process of finding
a correspondence between nodes and edges of two graphs that
satisfy some constraints ensuring that similar substructures in one
graph are mapped to similar substructures in the other. Many
approaches have been proposed to solve the graph matching
problem. In this paper we use a recent technique proposed by
Jouili et al. [19] but any other graph matching methods can be used.
This approach is based on node signatures notion. In order to
construct a signature for a node in an attributed graph, all available
information into the graph and related to this node is used. The
collection of these information should be refined into an adequate
structure which can provides distances between different node
signatures. In this perspective, the node signature is defined as a set
composed by four subsets which represent the node attribute, the
node degree and the attributes of its adjacent edges and the degrees
of the nodes on which these edges are connected. Given a graph
G¼ ðV ,E,a,bÞ, the node signature of niAV is defined as follows:

gðniÞ ¼ fai,yðniÞ,fyðnjÞg8ijAE,fbijg8ijAEg

where
�

P
(2
ai the attribute of the node ni.

�
 yðniÞ the degree of ni.

�
 fyðnjÞg8ijAE the degrees set of the nodes adjacent to ni.

�
 fbijg8ijAE the attributes set of the incident edges to ni.
Then, to compute a distance between node signatures, the
Heterogeneous Euclidean Overlap Metric (HEOM) is used. The HEOM
lease cite this article as: S. Jouili, S. Tabbone, Hypergraph-based ima
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uses the overlap metric for symbolic attributes and the normalized
Euclidean distance for numeric attributes. Next the similarities
between the graphs is computed as follows: First, a definition of
the distance between two sets of node signatures is given. Sub-
sequently, a matching distance between two graphs is defined
based on the node signatures sets. Let Sg be a collection of local
descriptions, the set of node signatures Sg of a graph g ¼ ðV ,E,a,bÞ is
defined as:

SgðgÞ ¼ fgðniÞ98niAVg

Let A¼ ðVa,EaÞ and B¼ ðVb,EbÞ be two graphs. And assume that
f : SgðAÞ-SgðBÞ is a function. The distance d between A and B is
given by j which is the distance between SgðAÞ and SgðBÞ

dðA,BÞ ¼jðSgðAÞ,SgðBÞÞ ¼min
f

X
gðniÞA SgðAÞ

dndðgðniÞ,fðgðniÞÞÞ

The calculation of the function jðSgðAÞ,SgðBÞÞ is equivalent to
solve an assignment problem, which is one of the fundamental
combinatorial optimization problems. It consists of finding a
maximum weight matching in a weighted bipartite graph. This
assignment problem can be solved by the Hungarian method [23].
The permutation matrix P, obtained by applying the Hungarian
method to the cost matrix, defines the optimum matching
between two given graphs.
5.2. Setup

In this experimental part, we focus on studying the behavior of
our approach with respect to the used threshold T. This study
covers, for a given value of T, the following five points:
1.
ge
The number of hyperedges generated by our method: This
aspect describes the relationship between the number of clus-
ters detected in a database of graphs and the threshold value.
2.
 The average size of hyperedges: This aspect describes the evolu-
tion of the average size of clusters, provided by our method and
compared to the threshold value.
3.
 The overlapping rate: The overlapping between two hyper-
edges hi and hj corresponds to the set G containing the graphs
shared by hi and hj, i.e. G¼ fgi9giAhi and giAhjg. To compute
the overlapping rate of our hypergraph structure, we use
retrieval for graph-based representation, Pattern Recognition
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Fig. 7. Datasets.

Fig. 8. Behavior of our hypergraph structure according to the threshold value: database GREC1: (a) number of hyperedges generated by our method, (b) the average size of

hyperedges, (c) the overlapping rate, (d) number of graph matching and (e) retrieval precision.
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Fig. 9. Behavior of our hypergraph structure according to the threshold value: database Lettrine: (a) number of hyperedges generated by our method, (b) the average size

of hyperedges, (c) the overlapping rate, (d) number of graph matching and (e) retrieval precision.
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the measure of Hong et al. [18]. Note that this measure
was developed in the context of fuzzy clustering which allows
overlapping between clusters. Specifically, the rate of overlapping
between two hyperedges hi and hj (tðhi,hjÞ) is the quotient of the
number of shared graphs divided by the number of graphs of the
smallest hyperedge. Formally,

tðhi,hjÞ ¼
Nshared

Nmin

with Nshared the number of shared graphs between hi and hj, and
Nmin ¼minð9hi9,9hj9Þ is the size (number of graphs) of the
smallest hyperedge between hi and hj. The rate of overlapping is
in the interval [0, 1] (value close to 1 indicates a strong over-
lapping).
lease cite this article as: S. Jouili, S. Tabbone, Hypergraph-based image
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The final overlapping rate of a hypergraphH (tðHÞ) is the average
of all overlapping rates between pairs of hyperedges in the
hypergraph, or formally:

tðHÞ ¼
P

tðhi,hjÞ

nðn�1Þ
2

with n is the number of hyperedges in H.

4.
 The number of graph matching: This aspect determines the

number of graph matching performed on an image retrieval
procedure.
5.
 The retrieval precision: This aspect assesses the quality of
image retrieval performed by our method. Precision is the
quotient of the number of relevant images found by the total
retrieval for graph-based representation, Pattern Recognition
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Fig. 10. Behavior of our hypergraph structure according to the threshold value: database Shape: (a) number of hyperedges generated by our method, (b) the average size of

hyperedges, (c) the overlapping rate, (d) number of graph matching and (e) retrieval precision.
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number of retrieved images by our proposed method for a
given query.

To evaluate our method, we used the following datasets:
�

P
(2
GREC1 database: The GREC1 database3 (see Fig. 7(a)) consists of
graphs representing symbols from architectural and electronic
drawings. Here, the ending points (i.e. corners, intersections
and circles) are represented by nodes which are connected by
undirected edges. The graph database used in our experiments
has 528 graphs, 22 classes and 24 graphs per class.
3 http://www.cvc.uab.es/grec2003/SymRecContest/index.htm.

lease cite this article as: S. Jouili, S. Tabbone, Hypergraph-based ima
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�

Nav

ge
Lettrine database: This database (see Fig. 7(b)) contains lettrine
(graphical object) extracted from digitized ancient documents.4

Since one lettrine contains a lot of information (i.e. texture,
decorated background, letters), the graphs are extracted from a
region-based segmentation [14] of the lettrine with a user-based
parametrization technique. The nodes of the graph are repre-
sented by the regions and the edges describe their adjacency
relationships. The graph database used in our experiments
consists of 280 graphs, 4 classes and 70 graphs per class.
4 Provided by the CESR—University of Tours on the context of the ANR

idomass project http://l3iexp.univ-lr.fr/navidomass/.

retrieval for graph-based representation, Pattern Recognition

http://www.cvc.uab.es/grec2003/SymRecContest/index.htm
http://l3iexp.univ-lr.fr/navidomass/
dx.doi.org/10.1016/j.patcog.2012.04.016
dx.doi.org/10.1016/j.patcog.2012.04.016
dx.doi.org/10.1016/j.patcog.2012.04.016


S. Jouili, S. Tabbone / Pattern Recognition ] (]]]]) ]]]–]]]10
�

Fig
hyp

P
(2
Shape database: We use the shapes provided by the LEMS
laboratory of the Brown University [33] (see Fig. 7(c)). The
graphs are extracted from the shapes by skeletonizing
and applying a polygonal approximation on the skeleton
to obtain straight line segments. For each line segment, we
locate endpoints and the graphs are based on the Delaunay
triangulations of these endpoints. The graph database used in
our experiments has 216 graphs, 18 classes and 12 graphs
per class.

�
 Logo database: This database (see Fig. 7(d)) consists of graphs

representing binary images of trademark-logos. Here, the
region adjacency graphs are used to represent the logos. The
graph database used in our experiments consists of 80 graphs,
with 10 classes and eight graphs per class.
. 11. Behavior of our hypergraph structure according to the threshold value: databas

eredges, (c) the overlapping rate, (d) number of graph matching and (e) retrieval p

lease cite this article as: S. Jouili, S. Tabbone, Hypergraph-based ima
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�

e Lo

reci

ge
Mutagenicity: This database consists of 400 graphs (two classes)
representing molecular compounds. The nodes represent the
atoms labeled with the corresponding chemical symbols and
edges by valence of linkage.

�
 Letter: This database (750 graphs, 15 classes) involves graphs

that represent distorted letter drawings. Each distorted letter
corresponds to a graph by representing lines by edges and
ending points of lines by nodes. The nodes are labeled by two-
dimensional attributes giving its position.

�
 GREC2: This database (528 images, 22 classes) consists of graphs

representing symbols from architectural and electronic draw-
ings. Here ending points (ie corners, intersections and circles)
are represented by nodes which are connected by undirected
edges and labeled as lines or arcs.
go: (a) number of hyperedges generated by our method, (b) the average size of

sion.

retrieval for graph-based representation, Pattern Recognition
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For each graph database, we compute the five criteria, defined
above, for several values of the threshold T. Regarding the retrieval
precision and the number of graph matching, we compute, for each
database, the average precision (respectively, the number of match-
ing average) on the first ten images selected by our method and
where each image of the database is set as a query image. We recall
that in the case where the number of graphs in the first hyperedge
is less than ten, our method retrieves the graphs of the next nearest
hyperedge.

We compare the precision and the number of graph matching
made by our method with those of the classical method of image
retrieval in which the query is compared with all graphs in the
database. We provide a comparison with only the exhaustive
retrieval because, to the best of our knowledge, the previous graph
Fig. 12. Behavior of our hypergraph structure according to the threshold value, data

average size of hyperedges, (c) the overlapping rate, (d) number of graph matching an

Please cite this article as: S. Jouili, S. Tabbone, Hypergraph-based ima
(2012), http://dx.doi.org/10.1016/j.patcog.2012.04.016
indexing works do not deal with graphs with non-discrete label
values and do not provide a way to navigate within a graph data sets.

5.3. Results

Figs. 8–14 show, respectively, the behavior of our method for
the different databases. Each figure is composed of five curves
where each one shows the behavior of one performance of our
method related on the threshold value. From these results we can
draw the following remarks:
�

base

d (e

ge
Considering the criteria of the number and the average size of
hyperedges generated based on the threshold, we observe that
the curves have the same appearance (their slopes are roughly
the same) for all databases. This appearance shows that for
mutagenicity: (a) number of hyperedges generated by our method, (b) the

) retrieval precision.

retrieval for graph-based representation, Pattern Recognition
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Fig. 13. Behavior of our hypergraph structure according to the threshold value, database Letter: (a) number of hyperedges generated by our method, (b) the average size of

hyperedges, (c) the overlapping rate, (d) number of graph matching and (e) retrieval precision.
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small values of the threshold, the number of hyperedges is
important and their average size is small. Indeed, for a small
threshold value, each hyperedge contains a small set of graphs
very similar (their distance is below the given threshold). On
the contrary, for large values of the threshold, the method
generates few hyperedges but with large sizes.

�
 Considering the overlapping rate, we observe also that the

curves show the same appearance for all databases. Indeed,
higher values of the threshold imply a higher overlapping rate.
In fact, for large values of the threshold, graphs are more likely
to belong simultaneously to several hyperedges. Moreover,
if the threshold exceeds the distance between the two most
distant graphs in a database, our method generates a single
hyperedge that contains the entire database. This is explained
lease cite this article as: S. Jouili, S. Tabbone, Hypergraph-based image
012), http://dx.doi.org/10.1016/j.patcog.2012.04.016
by the fact that all distances between graphs are less than the
threshold. In this case, the overlapping rate fall down to zero.

�
 Considering the number of graph matching, we observe that

when the threshold is high the number of matching is similar
to the linear search. In this case the structure tends to one
hyperedge and the query is matched with all the graphs of the
database as it is the case for a linear search. Also, we can
remark when the threshold is too small and tends to zero the
number of matching is near to the linear search. In this case
the structure contains much as hyperedges as graphs. In this
case a query is matched with each hyperedge which is similar
to match the query with each graph. Furthermore, related to
the retrieval precision, we note that our method achieves the
same degree of precision than classical retrieval (linear search).
retrieval for graph-based representation, Pattern Recognition
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Fig. 14. Behavior of our hypergraph structure according to the threshold value, database GREC2: (a) number of hyperedges generated by our method, (b) the average size

of hyperedges, (c) the overlapping rate, (d) number of graph matching and (e) retrieval precision.
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Despite the fact that we explore only a portion of the database,
while the classical image retrieval compares the graph of the
query image with all the graphs in the database. This highlights
the interest of our hypergraph model for indexing graphs.
In Table 1, we illustrate a comparison between the classical
retrieval method and our model by fixing the threshold value
for each database. The selected threshold values correspond to
the values that provide the best compromise between the maxi-
mum precision value and a minimum number of graph
lease cite this article as: S. Jouili, S. Tabbone, Hypergraph-based image
012), http://dx.doi.org/10.1016/j.patcog.2012.04.016
matching. These results show that our method shows similar
performance in terms of precision than classical retrieval,
although the average number of graph matching made by our
method is significantly less. For example, to search for images in
the Letter database, our method based on hypergraph achieves
the same precision (0.90) as the classical method. On the
contrary, our method performs on average 102.6 graph match-
ing against 750 graph matching operations executed by the
classical method. Similarly, we achieve similar performance for
retrieval for graph-based representation, Pattern Recognition
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Table 1
Retrieval results.

Database Our method Classical retrieval Threshold

Precision Number

of graph

matching

Precision Number

of graph

matching

GREC1 0.88 69.1 0.88 528 1.25

Lettrine 0.58 87.1 0.58 280 484.98

Shape 0.53 55.3 0.53 216 4.60

Logo 0.87 29.7 0.87 80 1.44

Mutagenicity 0.64 72.8 0.64 400 2.59

Letter 0.90 102.6 0.90 750 0.16

GREC2 0.98 66.4 0.98 528 4.77

Table 2
Chemical compounds retrieval.

Data-set size Average number of graph matching

Classical retrieval Hypergraph

34,989 17,494.5 971.8
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all tested databases which highlights the effectiveness and speed
of our method. The effectiveness is explained by the fact that the
retrieval precision of our method is equivalent to that of a linear
search. Thus, the organization of graphs into a hypergraph
structure does not cause a deterioration of the classical retrieval.
In addition, this hypergraph structure provides a fast graph
retrieval by exploring, for given retrieval task, only a subpart of
the hypergraph.

5.4. Large data-set

For sake of scalability test, we propose, in this section, a retrieval
process applied to a large graph set which represents chemical
compounds. This data set consists of 34,989 attributed graphs. In
each graph, the nodes represent the atoms labeled with the
corresponding chemical symbol and edges by valence of linkage.
In this experiment, only exact retrieval results will be given because
no ground truth is available yet. That is, each graph is considered as
a query, then the result consists of computing the number of graph
matching operations performed to find the query in the data-set.
We compare the number of graph matching made by our method
with those of the classical retrieval in which the query is compared
with all graphs in the data-set.

Table 2 presents the results of the comparison between the
classical retrieval and our model by fixing the threshold value. The
selected threshold value corresponds to the value that provide the
best performance. These results show that our method provides very
good results for large graph set comparing to classical retrieval. In
addition to this scalability property and through all the experiments,
we can conclude that our hypergraph model provide good results for
different type of objects (graphics, documents, moleculesy).
6. Conclusion

In this paper, we investigated how the structure of the hyper-
graph can be used for graph indexing. This organization builds a
hypergraph in which each vertex is a graph and each hyperedge
corresponds to a set of similar graphs. In the proposed method the
organization of the set of graphs is performed in two phases: first,
the method selects a set of the most representative prototypes of
Please cite this article as: S. Jouili, S. Tabbone, Hypergraph-based ima
(2012), http://dx.doi.org/10.1016/j.patcog.2012.04.016
the set. Second, each graph is assigned to all the nearest hyperedges
(created around each prototypes). The selection of the prototypes
can automatically set the number of hyperedges (clusters of graphs).
In addition, this also allows the multi-assignment of graphs, namely
a graph can be assigned to multiple clusters. Then, our method
creates an index that contains the pointers to all the selected proto-
types. In the retrieval phase, only the prototypes are used to locates
the set of graphs that contains the most relevant graphs to a given
query. In addition, by means of a hypergraph traversal algorithm
one can navigate into the graph database when the user want
explore the neighborhood of a given query. The experimental results
showed that our method achieves the same performance in terms of
precision than classical retrieval, but the average number of graphs
matched by our method is significantly less than the one provided
by linear search. Besides, following the result obtained on a large
chemical molecules database, our method show experimentally that
it is scalable (in term of size of database) and can be useful to
different domains.
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