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Context

▪ Traffic growth puts pressure on the European Airport’s capacity

▪ For peak operations, arrival traffic separation and throughput are constrained by:

▪ SESAR2020 Project 02 EnhAnced Runway THroughput (EARTH) aims to optimize runway 
performance with existing infrastructure
▪ Through reduction of wake separation (e.g RECATpairwise) or surveillance separation

⇒ The most limiting constraint may then become the leader aircraft ROT

▪ ROT depends on many factors hard to anticipate for the ATC
▪ Aircraft type, runway configuration, runway status, weather conditions, landing profile….
▪ Significant buffers have to be taken in account to cover all possible cases

Wake turbulence separation Surveillance minima Runway Occupancy Time (ROT)



ROT definition

▪ Difference between the time an aircraft is observed to overfly the runway threshold and the time 
at which it has vacated the runway

▪ An aircraft is considered as having vacated the runway if
▪ Either it is on the runway exit
▪ Or it is still on the runway but sufficiently far from the threshold (> 2400m)



Our strategy

▪ This model can directly be used to provide the required 
ROT spacing using a simple separation delivery tool

▪ 3 years of operations at LSZH Zürich airport
▪ Covers a period from 2015 to 2017
▪ 3 datasets:

▪ Surveillance radar tracks of all landing flights
▪ METAR data (wind speed, wind gust, visibility, pressure, 

temperature, meteorological events...)
▪ Surface wind speed and direction

▪ Focus on peak operation periods

▪ 233.000 exploitable flights after filtering

▪ Helping the ATC with a Machine Learning model able to predict the ROT depending on all impact 
parameters



Zurich airport topology

▪ 3 arrival runways:
▪ 14 (main arrival runway)
▪ 28
▪ 34

▪ Runway 14 is significantly different
▪ First exit is located at more than 2200m from the threshold
▪ Other exits are located after the 2400m limit
▪ All are high speed exits

▪ We expect the ROT to be driven by:
▪ The aircraft final TAS on runway 14
▪ The runway exit chosen by the aircraft on 28 and 34

14

34

28



2 Problems

1) The ATCo requires an information on the applicable separation/spacing at interception, 
therefore ROT spacing must be available several (typically 10) minutes before landing

⇒ The model must only use data available at least 10 minutes before the landing of the 
target flight

2) Is it possible to correct the prediction at shorter term ?
▪ Using refreshed data (or data unavailable in the 10-minutes term)
▪ Goal: anticipate a potential sub separation and order a go-around for the follower aircraft

⇒ We define 3 additional set-ups at shorter-term:
▪ At 8 NM from the threshold
▪ At 2 NM from the threshold
▪ At the threshold



10-minutes set-up

▪ Features:
▪ Aircraft type
▪ Wake turbulence RECAT category
▪ Landing runway
▪ Landing week, weekday and hour
▪ Airline
▪ The departure airport and its country
▪ Surface wind data (aggregated over 3 and 15 minutes)
▪ Pressure
▪ Visibility
▪ Temperature
▪ Weather events: rain, fog, snow, haze, convective clouds…
▪ Event intensity
▪ Ceiling clouds altitude



10-minutes set-up

▪ Modelisation as a regression problem where the target is the ROT value

▪ Dataset split into two subsets
▪ ⅔ for the learning
▪ ⅓ for the evaluation

▪ Selection of the model among a set of non-linear regressors through a 5-fold cross-validation
▪ XGBoost with a maximum of 5000 estimators of depth 8

▪ Improvement brought by the model is assessed through a baseline confrontation

▪ The baseline decision is defined as the average ROT observed per aircraft type and per 
runway



Improvement w.r.t baseline

Runway\Model R²-Score XG-Boost R²-Score Baseline # Data

All runways 0.516 0.352 70211

14 0.518 0.300 54504

28 0.222 0.146 11161

34 0.340 0.207 4546

▪ Improvement of around 50% of the R2-score w.r.t to the baseline

▪ Strong improvement on the runway 14

▪ As expected, the prediction task seems to be more complicated on runways 28 and 34



Features importance



Shorter terms set-ups

▪ Additional features:
▪ Aircraft ground speed (for 2NM and threshold set-ups)
▪ Presence of an aircraft on the landing runway (for 2NM set-up)
▪ Time elapsed since the last landing on the runway (for 2NM set-up)

▪ Updated weather features
▪ Last recorded wind speed and direction at decision time
▪ If available, updated METAR data

▪ Same algorithm and parametrization than for 10-minutes set-up



Shorter terms set-ups

Setup R² Score

10 Minutes 0.524

8 Nautical Miles 0.528

2 Nautical Miles 0.554

Threshold 0.582

▪ The gain in 8 NM set-up is negligible. The refreshment of weather data does not seem to 
bring much information

▪ The gain at 2NM and at threshold is substantial. The aircraft ground speed and the leader 
landing data seems to be informative for ROT prediction

▪ Shorter-term ROT predictions may be then used to correct the initial one



Application: Definition of ROT-based MRS

▪ ICAO PANS ATM doc 4444 allows for reduced MRS from 3.0 NM to 2.5 NM between succeeding aircraft which 
are established on the same final approach track within 10 NM of the runway threshold provided that the 
average ROT of landing aircraft is proven not to exceed 50 seconds.

▪ Following the same logic as for MRS=2.5 NM, reduced MRS below 3 NM can be applied behind all aircraft 
types for which the average ROT <60 s and following

MRS [NM]= ROT [s] x 180 kts/3600

▪ Indeed: 2.5 NM traveled in 50 s corresponds to a speed of 180 kts.

▪ Requires ROT prediction



Naïve vs M/L approach
Definition of ROT distance spacing

▪ Naive approach:
▪ ROT defined per aircraft type and per runway QFU as the mean of the observed values

▪ MRSnaive [NM]= ROTnaive [s] x180 kts /3600

▪ Obtained from the learning dataset

▪ M/L approach:
▪ ROT defined using model with many features (aircraft type, QFU, airline, met data, etc.) 

calibrated through M/L

▪ Obtained from the learning dataset 
▪ 2 spacing definitions:

▪ MRSM/L, 180kts [NM]= ROTM/L [s] x180 kts /3600

▪ MRSM/L, 175kts [NM]= ROTM/L [s] x175 kts /3600

⇒ taking advantage of higher ROT prediction accuracy

Mean ROT [s] ROT-based 
MRS [NM]

A321 46 2.3

A319 48 2.4

B738 50 2.5

A318 52 2.6

GLF5 58 2.9



Naïve vs M/L approach
Assessment

▪ For all ICAO Medium landplane aircraft flights

▪ Computation of the failure rate (= separation delivery below actual ROT) when aircraft are spaced at 

3NM (current MRS), MRSnaive, MRSM/L,180kts ,or MRSM/L,175kts 

▪ Using the time-to-fly distribution of all aircraft landing within +/- 5 min (assumed to be possible follower) 
considering all landplane followers (except Lights)

▪ Obtained using the test dataset (independent from the learning dataset)

▪ Distinction between follower category



Naïve vs M/L approach
Assessment

0.9% of the pairs spaced below observed 

ROT if all separated at MRSnaive

0.6% of the pairs spaced below observed 

ROT if all separated at MRSM/L computed 
with 180 kts

1.0% of the pairs spaced below observed 

ROT if all separated at MRSM/L computed 
with 175 kts



Naïve vs M/L approach
Assessment results

Runway mean Tsep-rot
MRS 3 NM

mean Tsep-rot

MRSnaive 

mean Tsep-rot

MRSM/L,180

mean Tsep-rot

MRSM/L,175 

Percentage below ROT

MRSnaive

Percentage below ROT

MRSM/L, 180

Percentage below ROT

MRSM/L,175

14 27.8 s 16.7 s 16.7 s 14.8 s 0.9% 0.6% 1.0%

28 23.9 s 14.3 s 14.1 s 12.3 s 1.1% 0.6% 0.9%

34 27.9 s 16.7 s 16.9 s 15.1 s 0.9% 0.6% 1.0%

-10 to 11 s

-10 to 11 s

-12 to 13 s

Lower error rate

Same error rate but … 
Better coverage of extreme cases



Conclusions and next steps

▪ Machine Learning can support the development of accurate models for ROT
▪ the XGBoost model outperforms an average-based baseline
▪ the prediction may be refined at shorter-term (especially using the aircraft ground speed)

▪ Based on Zurich case, compared to a naive approach, a model allows 
▪ reducing ROT-spacing by 3% leading to improved runway performance
▪ slight improvement of safety by better predicting extreme large ROT

▪ ROT ML predictions can also be used as input in a more advanced ATC separation Delivery tool 
such as the TBS-ORD tool concept developed in SESAR
▪ 10-minutes predictor for initial indicator
▪ 8 NM predictor for indicator update if needed
▪ 2 NM and threshold predictors for alerts

▪ Perspectives
▪ Possible extension to a multi-airport context using runway topologies
▪ On-going work in two projects

▪ VLD3 (Heathrow and Zürich)
▪ SESAR W2 AART (PJ02.14-10 ROCAT)



Appendix: Example of difficult cases

Category\Model XG-Boost Baseline # Data

Super (S) 0.452 0.022 149

Upper Heavy (UH) 0.525 0.207 4946

Lower Heavy (LH) 0.374 0.221 794

Upper Medium (UM) 0.513 0.206 27542

Lower Medium (LM) 0.367 0.148 18262

Light (L) 0.281 0.251 2958

Low-cost R² Score Mean Absolute Error (s)

False 0.526 3.33

True 0.381 3.80



Features importance (2 NM)



Features importance (threshold)



Influence of additional features

R² Score Mean Absolute Error (s)

2NM with speed and leader information 0.564 3.16

2NM with speed & without leader information 0.561 3.17

Threshold with speed 0.583 3.07

Threshold without speed 0.521 3.36

▪ The leader position and the time elapsed since leader landing does not seem to help to improve 
the prediction

▪ On the other hand, the speed allows to increase the R²-score by around 10%


