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Abstract: We propose a framework using contrastive learning as a pre-training task to perform image
classification in the presence of noisy labels. Recent strategies, such as pseudo-labeling, sample
selection with Gaussian Mixture models, and weighted supervised contrastive learning have, been
combined into a fine-tuning phase following the pre-training. In this paper, we provide an extensive
empirical study showing that a preliminary contrastive learning step brings a significant gain in
performance when using different loss functions: non robust, robust, and early-learning regularized.
Our experiments performed on standard benchmarks and real-world datasets demonstrate that:
(i) the contrastive pre-training increases the robustness of any loss function to noisy labels and (ii) the
additional fine-tuning phase can further improve accuracy, but at the cost of additional complexity.

Keywords: noisy labels; image classification; contrastive learning; robust loss

1. Introduction

Collecting large and well-annotated datasets for image classification tasks represents
a challenge as human quality annotations are expensive and time-consuming. Alternative
methods exist, such as web crawlers [1]. Nevertheless, these methods generate noisy labels
decreasing the performance of deep neural networks. They tend to overfit to noisy labels
due to their high capacity [2]. That is why developing efficient noisy-label learning (NLL)
techniques is of great importance.

Various strategies have been proposed to deal with NLL: (i) Noise transition matrix [3–5]
estimates the noise probability and corrects the loss function, (ii) a small and clean subset can
help to avoid overfitting [6], (iii) sample selection identifies true-labeled samples [7–9], and
(iv) robust loss functions solve the classification problem only by adapting the loss function to
be less sensitive to noisy labels [10–12]. Methods also combine other strategies (e.g., ELR+ [9],
DivideMix [13]): two networks, semi-supervised learning, label correction, or mixup. They
show the most promising results but lead to a large number of hyperparameters. That is why
we explore improvement strategies for robust loss functions. They are simpler to integrate and
faster to train, but as illustrated in Figure 1, they tend to overfit and have lower performance
for high noise ratios.

Meanwhile, new self-supervised contrastive learning algorithms for image represen-
tations have been recently developed [14,15]. Such algorithms extract representation (or
features) in unsupervised settings by comparing among the input samples. These represen-
tations can then be used for downstream tasks such as classification. For this task, methods
based on contrastive learning and fine-tuned only on a small fraction of all available labels
compete with fully supervised learning. Therefore, using contrastive learning to extract
features independently of the amount of noise for NLL appears as promising.

This work is a wide experimental exercise analyzing the current state-of-the-art in
noisy label image classification and evaluating if recent (unsupervised) contrastive learning
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techniques can also be used to provide robustness to classifiers trained in a noisy setting
with non-robust and robust loss functions. The key contributions of our work are:

• A framework increasing robustness of any loss function to noisy labels by adding a
contrastive pre-training task.

• The adaptation of the supervised contrastive loss to use sample weight values, repre-
senting the probability of correctness for each sample in the training set

• An extensive empirical study identifying and benchmarking additional state-of-
the-art strategies to boost the performance of pre-trained models: pseudo-labeling,
sample selection with GMM, weighted supervised contrastive learning, and mixup
with bootstrapping.
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Figure 1. Top-1 test accuracy for a ResNet18 trained on the CIFAR-100 dataset with a symmetric
noise of 80% for three losses: Cross Entropy (CE), Normalized Focal Loss + Reverse Cross Entropy
(NFL+RCE), and Early Learning Regularization (ELR).

2. Related Works

Existing approaches dealing with NLL and contrastive learning in computer vision
are briefly reviewed. Extra details can be found in Song et al. [16], Le-Khac et al. [17].

2.1. Noise Tolerant Classification

Sample Selection: This method identifies noisy and clean samples within the training
data. Several strategies leverage the interactions between multiple networks to identify the
probably correct labels [7–9]. Recent works [18,19] exploit the small loss trick to identify
clean and noisy samples by considering a certain number of small-loss training samples
as true-labeled samples. This approach can be justified by the memorization effect: deep
neural networks first fit the training data with clean labels during a so-called early learning
phase, before overfitting the noisy samples during the memorization phase [13,20].

Robust Loss Function: Commonly used loss functions, such as Cross Entropy (CE) or
Focal Loss, are not robust to noisy labels. Therefore, new loss functions have been designed.
Such robust loss functions can be easily incorporated into existing pipelines to improve
performance regarding noisy labels. The symmetric Cross Entropy [11] has been proposed
by adding a reverse CE loss to the initial CE. This combination improves the accuracy
of the model compared to classical loss functions. Ma et al. [12] show theoretically that
normalization can convert classical loss functions into loss functions robust to noise labels.
The combination of two robust loss functions can also improve robustness. However,
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the performance of normalized loss functions remains quite low for high noise rates, as
illustrated in Figure 1.

Semi-supervised: Semi-supervised approaches deal with both labeled and unlabeled
data. Recent works [9,21,22] combine sample selection with semi-supervised methods: the
possibly noisy samples are treated as unlabeled and the possibly clean samples are treated as
labeled. Such approaches leverage information contained in noisy data, for instance by using
MixMatch [23]. Semi-supervised approaches show competitive results. However, they use
several hyperparameters that can be sensitive to changes in data or noise type [16,24].

Contrastive learning: recent developments in self-supervised and contrastive learn-
ing [24–26] inspire new approaches in NLL. Li et al. [26] employed features learned by
contrastive learning to detect out-of-distribution samples.

2.2. Contrastive Learning for Vision Data

Contrastive learning extracts features by comparing each data sample with different
samples. The central idea is to bring different instances of the same input image closer and
spread instances from different images apart. The inputs are usually divided into positive
(similar inputs) or negative pairs (dissimilar inputs). Data augmentation is typically used
to create positive pairs. Frameworks have been recently developed, such as CPCv2 [27],
SimCLR [14], Moco [15]. Once the self-supervised model is trained, the extracted represen-
tations can be used for downstream tasks. In this work, the representations are used for
noisy label classification.

Chen et al. [14] demonstrate that large sets of negatives (and large batches) are crucial
in learning good representations. However, large batches are limited by GPU memory.
Maintaining a memory bank accumulating a large number of negative representations is an
elegant solution decoupling the batch size from the number of negatives [28]. Nevertheless,
the representations get outdated in a few iterations. The Momentum Encoder [15] addresses
the issues by generating a dynamic memory queue of representations. Other strategies aim
at getting more meaningful negative samples to reduce the memory/batch size [29].

Recent methods in contrastive learning have been developed to avoid computing
pairwise comparisons with negative samples. The Bootstrap Your Own Latent (BYOL)
algorithm [30] does not use any negative samples and compares only positive pairs with a
momentum encoder (similar to Moco) and a stop-gradient mechanism. This mechanism is
also used in the SimSiam method [31]. Caron et al. [32] introduce a cluster algorithm and
enforce consistency between cluster assignments for different augmentations instead of a
direct pairwise comparison.

3. Preliminaries

Let D = {(xi, yi)}i=1..n, xi ∈ Rd1×d2 , yi ∈ {1, · · · , K} denote a noisy input dataset with
an unknown number of samples incorrectly labeled. The associated true and unobservable
labels are written as yi. The images xi are of size d1 × d2 and the classification problem has
K classes. The goal is to train a deep neural network (DNN) f . Using a robust loss function
for training consists of minimizing the empirical risk defined by robust loss functions
in order to find the set of optimal parameters θ. The one-hot encoding of the label is
denoted by the distribution q(k|x) for a sample x and a class k, such as q(yi|xi) = 1 and
q(k 6= yi|xi) = 0, ∀i ∈ {1, · · · , n}. The probability vector of f is defined by the softmax
function p(k|x) = ezk

∑K
j=1 ezj where zk denotes the logits output with respect to class k.
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3.1. Classification with Robust Loss Functions

Our method employs noise-robust losses to train the classifier in the presence of noisy
labels. Such losses improve the classification accuracy compared to the commonly used
Cross Entropy (CE), as illustrated in Figure 1. In this section, the general empirical risk for
a given mini-batch is defined by L = ∑N

i=1 L( f (xi), yi) = ∑N
i=1 li. The term li is modified

by each loss function.
The classical CE is used as a baseline loss function not robust to noisy labels [33] and

is defined as:

lce = −
K

∑
k=1

q(k|xi)log(p(k|xi)). (1)

As presented in Section 2, Ma et al. [12] introduce robust loss functions called Active
Passive Losses that do not suffer from underfitting. We investigate the combination
between the Normalized Focal Loss (NFL) and the Reversed Cross Entropy (RCE) called
NFL+RCE. It shows promising results on various benchmarks. The NFL is defined as:

ln f l =

−
K
∑

k=1
q(k|xi)(1− p(k|xi))

γlog(p(k|xi))

−
K
∑

j=1

K
∑

k=1
q(y = j|xi)(1− p(k|xi))γlog(p(k|xi))

, (2)

where γ ≥ 0 is a hyperparameter. The RCE loss is:

lrce = −
K

∑
k=1

p(k|xi)log(q(k|xi)). (3)

The final combination following the framework simply gives a different α and β to
each loss:

ln f l+rce = α.ln f l + β.lrce. (4)

The two hyperparameters α and β control the balancing between more active learning
and less passive learning. For simplicity, α and β are set to 1.0 without any tuning.

Liu et al. [13] propose another framework to deal with noisy annotations based on
the “early learning” phase. The loss, called Early Learning Regularization (ELR), adds a
regularization term to capitalize on early learning. ELR is not, strictly speaking, a robust
loss but belongs to robust penalization and label correction methods. The penalization term
corrects the CE based on estimated soft labels identified with semi-supervised learning
techniques. It prevents memorization of false labels by steering the model towards these
targets. The regularization term maximizes the inner product between model outputs
and targets:

lelr = lce +
λelr
N

log

(
1−

K

∑
k=1

p(k|xi)t(k|xi)

)
. (5)

The target is not set equal to the model output but is estimated with a temporal
ensembling from semi-supervised methods. Let t(k|xi)

(l) denote the target for example xi
at iteration l of training with a momentum β:

t(k|xi)
(l) = βt(k|xi)

(l−1) + (1− β)p(k|xi)
(l). (6)

A more complex method improving accuracy, called ELR+, has also been developed
and combines weight averaging, two parallel networks, and a mixup data augmentation.

The importance in the choice of the loss function is also discussed for other applica-
tions, such as image segmentation [34] or survival data [35].
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3.2. Contrastive Learning

Contrastive learning methods learn representations by contrasting positive and nega-
tive examples. A typical framework is composed of several blocks [36]:

• Data augmentation: Data augmentation is used to decouple the pretext tasks from
the network architecture. Chen et al. [14] study broadly the impact of data augmenta-
tion. We follow their suggestion combining random crop (and flip), color distortion,
Gaussian blur, and gray-scaling.

• Encoding: The encoder extracts features (or representation) from augmented data
samples. A classical choice for the encoder is the ResNet model [37] for image data.
The final goal of the contrastive approach is to find correct weights for the encoder.

• Loss function: The loss function usually combines positive and negative pairs. The Noise
Contrastive Estimation (NCE) and its variants are popular choices. The general for-
mulation for such a loss function is defined for the ith pair as [38]:

Li = −log
exp(zT

i zj(i)/τ)

∑a∈A(i) exp(zT
i za/τ)

, with i ∈ I, (7)

where z is a feature vector, I is the set of indexes in the mini-batch, i is the index
of the anchor, j(i) is the index of an augmented version of the anchor source image,
A(i) = I \ {i}, and τ is a temperature controlling the dot product. The denominator
includes one positive and K negative pairs. The temperature has two competing effects
on the loss function: low temperatures help the model to learn from hard negatives
while high temperatures allow to use larger learning rate making the optimization
easier, and classes more separated [14,39].

• Projection head: That step is not used in all frameworks. The projection head maps
the representation to a lower-dimensional space and acts as an intermediate layer
between the representation and the embedding pairs. Chen et al. [14,31] show that the
projection head helps to improve the representation quality.

4. A Framework Coupling Contrastive Learning and Noisy Labels

As illustrated in Figure 2, our method classifies noisy samples in a two-phased process.
First, a classifier pre-trained with contrastive learning produces train-set pseudo-labels
(pre-training phase, in panel a), used during the training of a subsequent fine-tuning phase
(panel b). The underlying intuition is that the predicted pseudo-labels are more accurate
than the original noisy labels. The contrastive learning step performed in the first phase
(panel a1) is supposed to reduce the label noise sensitivity of the classifier (panel a2) thanks
to the computed representations; the resulting model can be also used in a standalone way
with a reduced number of hyperparameters, without the underlying fine-tuning phase.

The second phase leverages the pseudo-labels predicted by the pre-training in all
underlying steps (b1–b3). To mitigate the effect of potentially incorrectly predicted pseudo-
labels, a Gaussian Mixture Model (GMM, panel b1) with 2 components follows the small
loss-trick to predict for each sample the probability of correctness. This value is used as
a weight in a supervised contrastive step (panel b2), performed to improve the learned
representations by taking advantage of the label information. A classification head is added
to the contrastive model in order to produce the final predictions (panel b3). The fine-tuning
phase can be seen as an adaptation of the pre-training phase to handle pseudo-labels.

To maximize the impact of the contrastive learning on the underlying classification,
the supervised training is performed in 2 steps: a warm-up step, updating only the
classifier layer (while keeping the encoder frozen) is followed by the full model training.
We compared three different loss functions for the supervised classification: the classical
CE, the robust NFL+RCE, and the ELR loss.
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Figure 2. Overview of the framework consisting of two phases: pre-training (panel a) and fine-tuning
(panel b). After a contrastive learning phase (a1), a classifier (a2) is trained to predict train-set pseudo-
labels ŷ. The fine-tuning phase uses ŷ as a new ground truth. First, a GMM model (b1) predicts
the probability of correctness for each sample, used as a corrective weight factor in a supervised
contrastive training (panel b2). The final predictions ŷ f inal are produced by the (b3) classifier.

4.1. Sample Selection and Correction with Pseudo-Labels

Pseudo labels represent one hot encoded model’s predictions on the training set.
Pseudo-labels were initially used in semi-supervised learning to produce annotations for
unlabeled data; in the noisy label setting, various techniques (e.g., DivideMix) identify
a subset with a high likelihood of correctness and treat the remaining samples as the
unlabeled counterpart in semi-supervised learning. In this work, we elaborate on the
observation that the training set labels, predicted after training the model with a noise-
robust loss function (i.e., the pseudo labels), are more accurate than the ground truth. This
observation is supported by the results in Figure 3, depicting the accuracy of pseudo labels
predicted on CIFAR100, contaminated with various levels of asymmetric (panel a) and
symmetric (panel b) noise. The pseudo labels are more accurate than the corrupted ground
truth in both settings and bring a higher gain in performance as the noise ratio increases.
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Figure 3. Accuracy of pseudo labels on all simulated settings with asymmetric (a) and symmetric
(b) noise, evaluated on CIFAR100. The correctness of the ground truth is represented on the x-axis,
while the accuracy of predicted pseudo labels on the y-axis. In all experiments, the pseudo labels
have a higher accuracy than the corrupted ground truth and this gain increases with the noise ratio.

As proposed by other approaches [18], the loss value on train samples can be used to
discriminate between clean and mislabeled samples. The sample correctness probability is
computed by fitting a 2-components GMM on the distribution of losses [9]. The underlying
probability is used as a sample weight:

wi = p(k = 0|li), (8)

where li is the loss for sample i and k = 0 is the GMM component associated to the clean
samples (lowest loss). Figure 4 depicts the evolution of the clean training set identified by
GMM on an example: its accuracy grows from 0.6 to 0.93 while the size stabilizes at 60% of
the training set.
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Figure 4. Accuracy of the entire training set (in blue) compared to the clean train subset (in red); the
clean subset’s percentual size is depicted in green. The example is performed on CIFAR100, with 40%
symmetric noise.

4.2. Weighted Supervised Contrastive Learning

A modification to the contrastive loss defined in Equation (7) has been proposed to
leverage label information [39]:

Li = −log
1
|P(i)| ∑

p∈P(i)

exp(zT
i zp/τ)

∑a∈A(i) exp(zT
i za/τ)

, (9)

where P(i) = {j ∈ I \ {i}, yj = ỹi} with ỹi the prediction of the model for input xi.
As explained in the previous section, the loss value for the training set sample is

used to fit a GMM with 2 components, corresponding to correctly and incorrectly labeled
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samples. We adapted the supervised representation loss to employ w, a weighting factor
representing the sample probability of membership to the correctly labeled component.
Thus, likely mislabeled samples having large loss values would contribute only marginally
to the supervised representations:

Li = −log
1
|P(i)| ∑

p∈P(i)

w̃p,iexp(zT
i zp/τ)

∑a∈A(i) exp(zT
i zp/τ)

, (10)

where w̃p,i is a modified version of wp such as w̃p,i = 1 if p = j(i) else w̃p,i = wi. If all
samples are considered as noisy, Equation (10) is simplified into the classical unsupervised
contrastive loss in Equation (7).

5. Experiments

The framework is assessed on three benchmarks and the contribution of each block
identified in Figure 2 is analyzed.

5.1. Datasets

CIFAR10 and CIFAR100 [40]. These experiments assess the accuracy of the method
against synthetic label noise. The two datasets are contaminated with simulated symmetric
or asymmetric label noise reproducing the heuristic in Ma et al. [12]. The symmetric noise
consists of corrupting an equal arbitrary ratio of labels for each class. The noise level varies
from 0.2 to 0.8. For asymmetric noise [3,13], sample labels have been flipped within a
specific set of classes, thus providing confusion between predetermined pairs of labels. For
CIFAR100, 20 groups of super-classes have been created, each consisting of 5 sub-classes.
The label flipping is performed only within each super-class circularly. The asymmetric
noise ratio is explored between 0.2 and 0.4.

Webvision [41]. This is a real-world dataset with noisy labels. It contains 2.4 million
images crawled from the web (Google and Flickr) that share the same 1000 classes from
the ImageNet dataset. The noise ratio varies from 0.5% to 88%, depending on the class.
In order to speed-up the training time, we used mini Webvision [7], consisting of only the
top 50 classes in the Google subset (66,000 images).

Clothing1M [42]. Clothing1M is a large real-world dataset consisting of 1 million
images on 14 classes of clothing articles. Being gathered from e-commerce websites,
Clothing1M embeds an unknown ratio of label noise. Additional validation and test sets,
consisting of 14 k and 10 k clean labeled samples, have been made available. In order
to speed-up the training time, we selected a subset of 56,000 images keeping the initial
class distribution.

Both Webvision and Clothing1M images were resized to 128× 128. Therefore, the re-
ported results may differ from other papers cropping the images to a 224× 224 resolution.
Numerical details about the different datasets can be found in Appendix A.

5.2. Settings

We use the contrastive SimCLR framework [14] (https://github.com/HobbitLong/
SupContrast (accessed on 14 December 2020)) with a ResNet18 [37] (without ImageNet pre-
training) as the encoder. A projection head was added after the encoder for the contrastive
learning (of dimension 128 for CIFAR and dimension 512 for Webvision and Clothing1M)
with the following architecture: a multi-layer perceptron with one hidden layer and a ReLU
non-linearity. The classifier following the contrastive learning step has a simple multi-layer
architecture: a single hidden layer with batch normalization and a ReLU activation function.
A comparison with a linear classifier is provided in Appendix C.3.

For all supervised classification, we use the SGD optimizer with momentum 0.9 and
cosine learning rate annealing. The NFL hyperparameter γ is set to 0.5. Unlike the original
paper, the ELR hyperparameters do no depend on the noise type: the regularization

https://github.com/HobbitLong/SupContrast
https://github.com/HobbitLong/SupContrast
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coefficient λelr and the momentum β are set to 3.0 and 0.7. Details on the experiment
setting can be found in Appendix B.

All codes are implemented in the PyTorch framework [43]. The experiments for CIFAR
are performed with a single Nvidia TITAN V-12GB and the experiments for Webvision
and Clothing1M are performed with a single Nvidia Tesla V100-32GB, demonstrating the
accessibility of the method. Our implementation has been made available along with the
Supplementary Materials.

6. Results

All experiments presented in this section evaluate our method’s performance with the
top-1 accuracy score.

6.1. Impact of Contrastive Pre-Training

To evaluate the impact of the contrastive pre-training on the classification model,
the proposed method (pre-training phase) is compared with a baseline classifier, trained for
200 epochs without contrastive learning. For each simulated dataset, we compare robust
losses (e.g., NLF+RCE and ELR) and Cross Entropy. Results for CIFAR10 and CIFAR100 are
depicted in Table 1 for different levels of symmetric and asymmetric noise. The pre-training
improves the accuracy of the three different baselines for both datasets with different types
and ratios of label noise. The largest differences are observed for the noisiest case with 80%
noise. The pre-training outperforms the baselines by large margins between 10 and 75 for
CIFAR10 and between 5 and 30 for CIFAR100.

In addition to the comparisons with ELR and NFL+RCE, performed using our im-
plementations (column Base in Table 1), we present the results reported by other recent
competing methods. As shown in the Introduction, numerous contributions have been
made to the field in the last years. Six recent representative methods are selected for com-
parison: Taks [44], Co-teaching+ [45], ELR [13], DivideMix [9], SELF [21], and JoCoR [46].
The results are presented in Table 2. The difference between the scores reported by ELR and
those obtained with our run (using the same implementation, but slightly different hyper-
parameters and a ResNet18 instead of a ResNet34) suggests that the method is less stable on
data contaminated with asymmetric noise and sensitive to small changes hyperparameters.
Moreover, ELR proposes hyperparameters having different values depending on the type
of dataset (i.e., CIFAR10/CIFAR100) and underlying noise (i.e., symmetric/asymmetric),
identified after a hyperparameter search exercise. The best scores are reported by Di-
videMix and they surpass all other techniques. One can note DivideMix uses a PreAct
ResNet18 while we use a classical ResNet18. Moreover, a recent study [24] attempted to
replicate these values and reported significantly lower results on CIFAR100 (i.e., 49.5%
instead of 59.6% on symmetric data and 50.9% instead of 72.1% on asymmetric data). Our
framework compares favorably with the other competing methods, both on symmetric and
asymmetric noise.

Webvision and Clothing1M results are presented in Table 3. The contrastive frame-
work outperforms the respective baselines for the three loss functions. As a result that the
images have a reduced size, and for Clothing1M, we use a smaller training set, the direct
comparison with competing methods is less relevant. However, the observed gap in perfor-
mance is significant and promising for training images with higher resolution. Moreover,
a ResNet50 model has been trained with our framework on the Webvision dataset with
a higher resolution (224× 224). The accuracy reaches 75.7% and 76.2% for CE and ELR,
respectively. These results are very close to the values reported with DivideMix (77.3%)
and ELR+ (77.8%) using a larger model, Inception-ResNet-v2 (the difference is more than
4% on the ImageNet benchmark [47]).
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Table 1. Results on both CIFAR10 and CIFAR100 using symmetric noise (0.2–0.8) and asymmetric
noise (0.2–0.4). We compare training from scratch or from pre-trained representation. Best scores are
in bold for each noise scenario and each loss.

CIFAR10 CIFAR100

Type η Loss Base Pre-t. Base Pre-t.

Sym

0.2

ce 77.2 87.7 55.6 56.5

elr 90.3 93.0 64.1 67.4

nfl+rce 91.0 92.7 66.6 68.8

0.4

ce 58.2 78.0 39.9 41.9

elr 82.3 92.0 56.9 62.0

nfl+rce 87.0 91.4 60.2 66.3

0.6

ce 35.2 59.2 21.8 26.8

elr 64.2 90.4 40.6 55.7

nfl+rce 80.2 88.1 47.0 61.8

0.8

ce 17.0 27.3 7.80 12.4

elr 18.3 84.8 16.2 45.3

nfl+rce 42.8 59.9 20.1 50.2

Asym

0.2

ce 84.0 87.9 59.0 57.8

elr 91.8 92.4 70.3 70.2

nfl+rce 90.2 91.5 63.9 68.4

0.3

ce 79.2 83.9 50.6 50.4

elr 89.6 91.7 69.8 69.3

nfl+rce 86.7 89.9 53.5 63.5

0.4

ce 75.3 77.8 41.8 42.4

elr 72.3 89.5 67.6 67.6

nfl+rce 80.0 82.4 40.6 47.8

Table 2. Accuracy scores compared with 6 methods (Taks, Co-teaching+, ELR, DivideMix, SELF,
and JoCoR) on CIFAR10 (C10) and CIFAR100 (C100). The cases most affected by dropout are
presented, with symmetric (S) and asymmetric (A) noise. Top-2 scores are in bold.

C10
80% S

C10
40% A

C100
80% S

C100
40% A

Ours
(ELR)

84.8 89.5 45.3 67.6

ELR [13] 73.9 91.1 29.7 73.2

Taks [44] 40.2 73.4 16.0 35.2

Co-teach+ [45] 23.5 68.5 14.0 34.3

DivideMix [9] 92.9 93.4 59.6 72.1

SELF [21] 69.9 89.1 42.1 53.8

JoCoR [46] 25.5 76.1 12.9 32.3
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Table 3. Top-1 accuracy for mini-Webvision and Clothing1M. Best scores are in bold for each dataset
and each loss. Pre-t represents the pre-training phase while Fine-tune refers to the results after the
fine-tuning step.

Webvision Clothing1M

Loss Base. Pre-t. Fine-Tune Base. Pre-t. Fine-Tune

ce 51.8 57.1 58.4 54.8 59.1 61.5

elr 53.0 58.1 59.0 57.4 60.8 60.4

nfl+rce 49.9 54.8 58.2 57.4 59.4 60.1

Supported by this first set of experiments, the preliminary pre-training with con-
trastive learning shows great performances. The accuracy of both traditional and robust-
loss classification models is significantly improved.

6.2. Sensitivity to the Hyperparameters

Estimating the best hyperparameters is complex for datasets with noisy labels as
clean validation sets are not available. For instance, Ortego et al. [24] show that two
efficient methods (e.g., ELR and DivideMix) could be sensitive to specific hyperparameters.
Therefore, a hyperparameter sensitivity study has been carried out to estimate the stability
of the framework for the learning rate. Figure 5 depicts the sensitivity on CIFAR100
with 80% noise. CE and NFL+RCE seem to have opposite behaviors. The CE reaches
competitive results with small learning rates but tends to overfitting for higher learning
rates. The NFL+RCE loss tends to underfitting for the lowest learning rates but is quite
robust for higher values. The ELR loss has the smallest sensitivity to the learning for the
investigated range but does not reach the best values obtained with CE or NFL+RCE. We
can assume that the regularization term coupled with pre-training is very efficient. It
prevents memorization of the false labels as observed with CE. Results for other noise
ratios are documented in Appendix C.2.
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CE (Pre-training)
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Figure 5. Learning rate sensitivity for CIFAR100 with 80% noise. The explored learning rate values
are {0.001, 0.01, 0.1, 1.0}. The baseline (dashed line) is compared with our framework (solid line).
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This sensitivity analysis is limited to the learning rate. Investigating the impact of
other hyperparameters, such as the momentum β or the regularization factor λelr, could be
interesting. In their original papers, ELR and NFL+RCE reach respectively 25.2% and 30.3%
with other hyperparameters. These values are still far from the improvements brought
by the contrastive pre-training but it suggests that the results could be improved with
different hyperparameters.

Our empirical results indicate that the analyzed methods may be sensitive to hyper-
parameters. Despite the promised robustness to label noise, the analyzed robust losses
are also affected by overfitting or underfitting. Our experiments have been built upon
the parameters recommended in each issuing paper (e.g., ELR, SIMCLR) but, since the
individual building blocks can be affected by small variations in input parameters, the per-
formance of our method may also be impacted. Finding a relevant method to estimate
proper hyperparameters in NLL remains a challenge.

As overfitting remains an important and recurrent issue affecting the training of noisy
label models, we explored three strategies to identify when overfitting starts, without using
a clean validation set. This constraint was imposed to simulate the real-world scenario,
when only access to a potentially noise-corrupted dataset is provided. First, the behavior
of a corrupted validation set was analyzed on symmetric and asymmetric datasets, but we
failed to establish a consistent relation between the start of overfitting and the trend in
the accuracy of the validation set. The accuracy of the validation set increases for the
first few training epochs and then stabilizes over a plateau phase. Secondly, we explored
a recent contribution, attempting to identify the Training Stop Point (TSP) [48] under
similar conditions, but our experimental tests have shown that proposed heuristic does not
consistently apply to all studied types of noise. Thirdly, we studied the Centered Kernel
Alignment (CKA) [49] characterizing the representations created in the final network layers,
but we could not identify a change in stability associated with the start of overfitting. Thus,
we conclude that in the absence of a clean validation set, identifying when overfitting
starts remains an open challenge for noisy labels. The three summarized experiments are
detailed in Appendix G.

6.3. Impact of the Fine-Tuning Phase

Experimental results on synthetic label noise, depicted in Figure 6, show that contin-
uing the presented pre-training block (Figure 2) with the fine-tuning phase increases the
accuracy in over 65% of cases on CIFAR10 and over 80% of cases on CIFAR100. For both
datasets, asymmetric noise data benefit more from this approach than symmetric noise. All
experiments only use the input parameters proposed in the loss-issuing papers.

The sample selection has also got a positive impact on the two real-world datasets,
as shown in Table 3 by the “Fine-tune” columns. The average accuracy improvement is
about 1.8%. Only the ELR loss function slightly decreases the performance on Clothing1M.

Enriching pre-trained models with sample weighting and selection, pseudo labels
instead of corrupted targets, and supervised contrastive pre-training can improve the
classification accuracy. However, such an approach raises the question of a trade-off
between complexity, accuracy improvement, and computation time.
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Figure 6. Accuracy gain when performing the fine-tuning phase after the pre-training block (com-
puted as the difference between fine-tuning accuracy and pre-training accuracy). The plot gathers the
results for all noise ratios on CIFAR10 (panels a,b) and CIFAR100 (c,d) with symmetric (first column)
and asymmetric (second column) noise.

7. Discussion and Limits of the Framework

In addition to the presented fine-tuning phase, we evaluated the performance of other
promising techniques, such as the dynamic bootstrapping with mixup [18]. This strategy
has been developed to help convergence under extreme label noise conditions. Details can
be found in Appendix D. The improvement that dynamic bootstraping can bring when
used after pre-training is depicted in Figure 7. In most of the cases, this technique improves
the accuracy, as indicated by the positive accuracy gain scores, measuring the difference
between the accuracy after dynamic bootstraping and the accuracy of the pre-training
phase. ELR and CE benefit most from this addition for CIFAR100. The impact of the
dynamic boostrapping should also be analyzed for the fine-tuning phase and for larger
datasets, such as Webvision or Clothing1M.
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Figure 7. Top-1 accuracy gain for the dynamic bootstrapping on CIFAR100 with asymmetric (a) and
symmetric noise (b). Dynamic bootstrapping is an alternative to the proposed fine-tuning phase.
Each color is associated to a noise ratio.

One of the major drawbacks of our method is the extra computational time needed to
learn representations with contrastive learning. A detailed study, comparing the execution
time of our framework with 6 other competing methods has been provided in Appendix F.
The pre-training phase doubles the execution time of a reference baseline, consisting of
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performing only a single classification step, while the entire framework increases the
execution time 3 to 4 times the baseline value. However, the contrastive learning does
not increase the need for GPU memory if the batch size is limited for the contrastive
learning [15,50]. The computational time could be reduced by initializing the contrastive
step with the pre-trained weights from ImageNet.

Most state-of-the-art approaches also leverage computationally expensive settings,
consisting of larger models (e.g., ResNet50), dual model training, or data augmentation
such as mixup. In this work, we explored the limits of a restricted computational setting,
consisting of a single GPU and 8GB RAM. All experiments use a ResNet18 model, batch
sizes of 256, and for real-world datasets, the images have been rescaled (e.g., 128× 128
instead of 224 × 224). We also foresee that the contrastive learning step could be im-
proved by images with higher resolutions as smaller details could be identified in the
representation embedding.

There remain multiple open problems for future research, such as: (i) identifying the
start of the memorization phase in the absence of a clean dataset, (ii) studying the impact
of contrastive learning on other models for noisy labels such as DivideMix, (iii) comparing
SimCLR approach in the context of noisy labels with other contrastive frameworks (the
impact of Moco is studied in Appendix C.1) and other self-supervised approaches, and
(iv) having a better theoretical understanding of the interaction between the initial state pre-
computed with contrastive learning and the classifier in presence of noisy labels. Moreover,
the analysis carried out in this work should be validated on larger settings, in particular on
Clothing1M with a ResNet50, higher resolutions, and the full dataset.

8. Conclusions

In this work, we presented a contrastive learning framework optimized with several
adaptations for noisy label classification. Supported by an extensive range of experiments,
we conclude that a preliminary representation pre-training improves the performance of
both traditional and robust-loss classification models. Additionally, multiple techniques
can be used to fine-tune and further optimize these results; however, no approach provides
a significant improvement systematically on all types of datasets and label noise. The Cross
Entropy penalized by Early Learning Regularization (ELR) shows the best overall results
for synthetic noise but also real-world datasets.

However, the training phases remain sensitive to input configuration. Overfitting is
the common weakness of all studied models. When trained with tuned parameters, even
traditional (Cross Entropy) models provide competitive results, while robust-losses are
less sensitive. The typical noisy label adaptations, such as sample selection or weighting,
the usage of pseudo labels, or supervised contrastive losses, improve the performance to a
lesser extent but increase the framework’s complexity. We hope that this work will promote
the use of contrastive learning to improve the robustness of the classification process with
noisy labels.

Supplementary Materials: The archive called python_scripts.zip is available online at https://www.
mdpi.com/2306-5729/6/6/61/s1. Our implementation has been made available along with this
archive. It contains information about the environment, Python scripts, and Jupyter notebooks to run
our experiments.
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ELR Early Learning Regularization
GMM Gaussian Mixture Model

Appendix A. Description of the Datasets

Table A1 gives a detailed description of the datasets, including size of the training and
test sets, the image resolution, and the number of classes.

Table A1. Description of the datasets used in the experiments.

Data Set Train Test Size # Classes

CIFAR10 50 K 10 K 32 × 32 10

CIFAR100 50 K 10 K 32 × 32 100

Clothing1M 56 K 5 K 128 × 128 14

mini Webvision 66 K 2.5 K 128 × 128 50

Appendix B. Detailed Settings of the Experiments

All experiments use the ResNet18 as an encoder. The classification steps are combined
with data augmentation: a random crop with a padding of 4, a horizontal flip with a
probability of 50%, and a random rotation of 20◦. All other hyperparameters are shown
in Table A2.

Table A2. Training parameters. Symbols: l.r means learning rate, w.d means weight decay, opti.
means optimizer, Proj. dim. means the dimension of the projection head, Repre. means representation
step, and Classi. means the supervised classification step.

C10/C100 Webvision Clothing1M

Repre.

Batch 512 512 512

Opti. Adam Adam Adam

l.r. 10−3 10−3 10−3

w.d. 10−6 10−6 10−6

Epochs 500 500 500

Proj. dim. 128 512 512

https://www.cs.toronto.edu/~kriz/cifar.html
https://data.vision.ee.ethz.ch/cvl/webvision/dataset2017.html
https://github.com/Cysu/noisy_label
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Table A2. Cont.

C10/C100 Webvision Clothing1M

Classi.

Batch 256 256 256

Opti. SGD SGD SGD

l.r. 0.01/0.1 0.4 0.01

w.d. 10−5 3.10−5 10−4

Epochs 200 200 200

Appendix C. Ablation Study

Appendix C.1. Contrastive Learning with a Momentum Encoder

The momentum encoder from the Moco framework [15] maintains a dynamic memory
queue of representations. The current mini-batch is added to the memory queue while
the oldest mini-batch is dequeued. The offline momentum encoder is a copy of the online
encoder by taking an exponentially-weighted average of the parameter of the online
encoder. The main advantage of Moco is to be able to reduce the batch size (and the GPU
memory) while keeping a very large number of negative pairs for the contrastive learning.

The different representations computed by SimCLR and Moco are compared on CI-
FAR100. Both approaches are trained for 500 epochs following the usual hyperparameter
parameters from the initial papers. As the two methods use different strategies to compute
the representations, their quality is assessed by learning a linear classifier on top of the
frozen encoder network. It can be seen as a proxy for representation quality. The Sim-
CLR framework reaches 55.3% of accuracy while Moco gets 55.0% of accuracy. However,
the two encoders do not behave in a similar way with regard to noisy labels. The same
classifier (multi-layer, same learning rate and weight decay) is trained starting from the
representation computed by SimCLR and Moco. As depicted in Table A3, the represen-
tations computed by Moco are more sensitive to the noisy labels. However, reducing
the learning rate of the optimizer by a factor 10 (column Moco-Fine Tune) significantly
increases the accuracy.

Table A3. Top-1 accuracy on CIFAR100 with 80% noise. Two different contrastive learning frame-
works are evaluated for the pre-training: SimCLR and Moco. The third column gives the accuracy
for a classifier with a smaller learning rate.

SimCLR Moco Moco-Fine Tune

CE 12.4 12.0 49.0

ELR 45.3 38.8 42.3

NFL+RCE 50.2 26.3 47.0

Even if pre-training the encoder increases the accuracy for both contrastive methods,
the two approaches do not have the same behavior. In particular, the best parameters
for the classifier optimizer seem to be different. This raises several questions about the
difference between the two representations and what properties of these representations
improve the robustness of the classifier.

Appendix C.2. Sensitivity to the Learning Rate

We perform a hyperparameter search on the CIFAR100 datasets. The learning rate is
chosen in {10−3, 10−2, 10−1, 100}. Results are presented in Figure A1. The configuration
with 80% noise is clearly the most sensitive case, particularly for the NFL+RCE loss and
the CE. The ELR method is quiet robust over the investigated range.
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Figure A1. Cont.
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(c) CIFAR100 with 40% noise.
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Figure A1. Hyperparameter sensitivity for CIFAR100.

Appendix C.3. Impact of the Classifier Architecture

The impact of the 2 classifier architectures is detailed in Table A4. The multi-layer
architecture performs better on datasets contaminated with a significant amount of asym-
metric noise.
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Table A4. Results on both CIFAR10 and CIFAR100 using symmetric noise (0.2–0.8) and asymmetric
noise (0.2–0.4). We compare a single linear layer (L) to multiple layers (M) final classification head,
for three losses: CE, ELR, and NFL+RCE.

CIFAR10 CIFAR100

Type η Loss L M L M

Sym

0.2

ce 91.7 87.7 58.6 56.5

elr 92.9 93.0 66.4 67.4

nfl_rce 93.2 92.7 69.7 68.8

0.4

ce 90.6 78.0 44.2 41.9

elr 92.1 92.0 60.8 62.0

nfl_rce 92.1 91.4 67.0 66.3

0.6

ce 88.1 59.2 28.9 26.8

elr 89.7 90.4 54.0 55.7

nfl_rce 90.2 88.1 63.7 61.8

0.8

ce 72.6 27.3 14.1 12.4

elr 82.0 84.8 41.6 45.3

nfl_rce 78.9 59.9 54.2 50.2

Asym

0.2

ce 91.6 87.9 60.1 57.8

elr 92.7 92.4 69.3 70.2

nfl_rce 92.5 91.5 69.1 68.4

0.3

ce 90.2 83.9 52.3 50.4

elr 90.6 91.7 68.5 69.3

nfl_rce 91.2 89.9 68.0 63.5

0.4

ce 84.7 77.8 43.7 42.4

elr 68.4 89.5 65.5 67.6

nfl_rce 62.6 82.4 63.0 47.8

Appendix D. Dynamic Bootstrapping with Mixup

In addition to the presented fine-tuning phase, we also evaluated the performance of
other techniques recently proposed for noisy label classification. The weights w computed
by the sample selection phase can also be combined with a mixup data augmentation
strategy [51]. A specific strategy for noisy labels, called dynamic bootstrapping with
mixup [18], has been developed to help convergence under extreme label noise conditions.
The convex combinations of sample pairs xp (loss lp) and xq (loss lq) is weighted by the
probability w to belong to the clean dataset:

x =
wp

wp + wq
xp +

wq

wp + wq
xq. (A1)

l =
wp

wp + wq
lp +

wq

wp + wq
lq. (A2)

The associated CE is corrected according to the weights:

lce = −
K

∑
k=1

(wiq(k|xi) + (1− wi)zi)log(p(k|xi)), (A3)

where z(k|xi) = 1 if k = argmax p(k|xi) or zero for all the other cases. If the GMM
probability is well estimated, combining one noisy sample with one clean sample leads to
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a large weight for the clean sample and a small weight for the noisy sample. Clean–clean
and noisy–noisy cases remain similar to a classical mixup with weights around 0.5.

The dynamic bootstrapping for ELR is derived by replacing the CE term by the
corrected version:

lelr(θ) = lceb(θ) +
λelr
N

log

(
1−

K

∑
k=1

p(k|xi).t(k|xi)

)
. (A4)

Regarding the robust loss function NFL+RCE, the two losses have to be modified:

ln f l = wi

−
K
∑

k=1
q(k|xi)(1− p(k|xi))

γlog(p(k|xi))

−
K
∑

j=1

K
∑

k=1
q(y = j|xi)(1− p(k|xi))γlog(p(k|xi))

+ (1− wi)

−
K
∑

k=1
z(k|xi)(1− p(k|xi))

γlog(p(k|xi))

−
K
∑

j=1

K
∑

k=1
z(y = j|xi)(1− p(k|xi))γlog(p(k|xi))

(A5)

where q is the one-hot encoding of the label (the zero value is fixed to a low value to avoid
log(0)).

lrce = −
K

∑
k=1

p(k|xi)log(wi.q(k|xi) + (1− wi)zi) (A6)

Appendix E. Classification Warmup

This section compares the classification accuracy of models trained with and with-
out a warm-up phase after the representation learning. The warm-up phase consists of
freezing the entire model except for the classification head. Figure A2 depicts the gain
in performance brought by the warm-up phase. When using the default values, its in-
clusion is beneficial only for significant amounts of symmetric noise. Our experiments
have been performed using only the recommended classifier learning rates, detailed in
the experimental setup. Having different learning rates for the warm-up phase and the
classification optimizing all weights (encoder and classifier) could have a different impact
on the warmup phase.
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Figure A2. Gain in performance when using a supplementary classifier warm-up phase before
training the entire model on CIFAR 100 with symmetric (panel a) and asymmetric noise (panel b).

Appendix F. Execution Time Analysis

In order to estimate our method’s computational cost, we compared the execution
time of both approaches, consisting of performing only the pre-training phase and the
pre-training followed by fine-tuning with the execution time of performing only one
supervised classification phase (i.e., the baseline). The number of times our methods were
slower than the baseline is depicted in Table A5. We provided similar metrics for the
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methods making available this information (i.e., Taks, Co-teaching+, JoCoR). As expected,
the pre-training doubles the execution time of the baseline as, in addition to training
the classifier, a contrastive learning phase has to be performed beforehand. The entire
framework introduces a computational cost 3 to 4.5 times higher. However, all methods
leveraging pre-trained models (using, for instance, supervised pre-training) also hide a
similar computational cost.

Table A5. Comparison of execution time results reported as a factor with respect to the training time
of the baseline, representing the supervised training of the model with the CE loss. The abbreviation
Ours (Pre-t) indicates the pre-training phase while Ours (Fine-tune) indicates the pre-training phase
followed by fine-tuning.

C10
80% S

C10
40% A

C100
80% S

C100
40% A

Ours (Pre-t) 2.36 2.53 2.40 2.32

Ours (Fine-tune) 3.42 3.63 4.31 4.36

Taks 0.53 1.04 0.52 0.98

Co-teach+ 2.00 2.00 2.00 2.01

JoCoR 1.73 1.74 1.72 1.74

Appendix G. An Attempt to Prevent Overfitting with Early Stopping

Overfitting is the common weakness of all studied models. Several strategies under-
standing and preventing overfitting have been explored: (i) analyzing the model behavior
on a validation set, (ii) identifying the start of the memorization phase using Training
Stop Point [48], and (iii) characterizing changes in the model using Centered Kernel
Alignment [49]. A clean validation set is generally used to find the best moment for early
stopping and to estimate the hyperparameter sets. However, we assume that clean valida-
tion samples are not available. Therefore, the methods must be robust to overfitting and to
a wide range of hyperparameter values.

As typical noisy label settings lack a clean reference set, we contrasted the behavior of
the model on a corrupted validation set with that on a clean test set, where overfitting can be
easily identified. Train/validation sets have been generated using 5 cross validation folds.
In the figure below, panel (a) depicts the evolution of accuracy scores on the corrupted
train/validation sets as well as on the test set. After the first 50 epochs, the model starts
overfitting as the test accuracy drops by 10% (Figure A3 panel a). The accuracy on the
corrupted train continues to increase as the model memorizes the input labels. However,
on the corrupted validation set a plateau followed by a loss of performance is indicative of
the same phenomena, but without being always aligned with the overfitting phase observed
on the test-set. The memorization phenomena of the train-set labels incapacitates the model
to generalize on the corrupted validation set and explains the significant difference in
scores between the train and validation accuracies.

A second perspective on the analysis of overfitting explores the stability of the net-
work’s predictions on the validation set. Panel (b) depicts the number of samples predicted
in different classes across consecutive epochs. As the model starts overfitting, the prediction
stability also increases. After 200 epochs, only 500 from 10,000 samples on the validation
set change class from one epoch to another. As expected, the network stability is correlated
with model overfitting on severe label noise.
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Figure A3. Evolution of accuracy across train/validation/test sets. (a) Prediction stability on the
validation set computed as the number of samples changing class across consecutive epochs. We
compared the stability of predictions (in red) with the accuracy of the clean test set (in blue). (b)
The rolling mean average of the number of predictions has been depicted in black. The experiments
have been performed on CIFAR 100, with 80% symmetric noise during the first classification phase
and used NFL+RCE loss. In this plot, only the test set has correct labels. The accuracy on the
corrupted validation set reflects the noise level while on the corrupted train set the increase in
accuracy corresponds to overfitting (memorization of incorrect labels).
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Figure A4. Evolution of accuracy across train/validation/test sets (a) Prediction stability on the
validation set computed as the number of samples changing class across consecutive epochs. We
compared the stability of predictions (in red) with the accuracy of the clean test set (in blue). (b)
The rolling mean average of the number of predictions has been depicted in black. The experiments
have been performed on CIFAR 100, with 40% asymmetric noise during the first classification phase
and used NFL+RCE loss. In this plot, only the test set uses correct labels. The accuracy on the
corrupted validation set reflects the level of label noise in the data, while on the corrupted train set
the increase in accuracy corresponds to overfitting (memorization of incorrect labels).

Several recent contributions studied the overfitting phenomena of neural networks in
an attempt to identify an early stopping point corresponding to the maximum obtainable
test accuracy. Traditional approaches leverage a clean test set which is often unavailable
when confronted with noisy labeled data. Kamabattula et al. [48] proposed to find a
Training Stop Point (TSP), a heuristic analyzing the rate of change in the training accuracy
and correlated its transition towards the memorization phase with a transition towards a
smoother (smaller variance) regime, as depicted below. Our experimental results showed
that the theoretical conditions to identify the early stopping point are not always met as
suggested by TSP. Figure A5 indicates that the overfitting phase, starting after the first
5 epochs, does not change the variance of the train loss.
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Figure A5. Evolution of train loss and test accuracy on CIFAR, 60% symmetric noise. The theoretical
conditions of higher variance on the train loss, associated with the start of the memorization phase,
as suggested by TSP, are not fulfilled.

Centered Kernel Alignment (CKA) [49] provides a similarity index comparing repre-
sentations between layers of different trained models. In particular, CKA shows interesting
properties as CKA can consistently identify correspondences between layers trained from
different initializations.

The objective is two-fold: (i) observing if a specific behavior can be identified for
the overfitting and (ii) comparing the CKA values with and without contrastive pre-
training. The CKA index is computed at three different locations in the network: the
input layer, the middle of the network, and the final layer. Figure A6 shows the CKA
similarity computed between the initialization/pre-trained model and the same layer at
different epochs during the training process. It is interesting to note that the first layer
of the pre-trained model remains very similar to the same layer computed by contrastive
learning. Such behavior was expected in order to improve the robustness against noisy
labels. Indeed, if contrastive learning can extract good representations for semi-supervised
or transfer learning, being close to such representations can also help to avoid learning
noisy labels. As expected, all layers of the model trained from a random initialization vary
much more during the training.

The training phase of the pre-trained model reaches its maximum accuracy around
50 epochs but the CKA values of the middle and last layers continue to drop until
130 epochs. On the other hand, the CKA values of the initialized model remain stable
after 150 epochs when the test accuracy reaches almost its maximum value. At first glance,
the CKA behavior cannot be related to overfitting.

None of the studied approaches provides a solution preventing overfitting across all
our experiments and this problem remains an open question.
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(a) CKA from a pre-trained encoder with contrastive learning.
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(b) CKA from a random initialization.

Figure A6. CKA similarity for a model trained with the NFL+RCE loss function on CIFAR100 with
80% noise.
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