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Abstract. Radiomics - high-dimensional features extracted from clinical im-
ages - is the main approach used to develop predictive models based on 3D
Positron Emission Tomography (PET) scans of patients suffering from cancer.
Radiomics extraction relies on an accurate segmentation of the tumoral region,
which is a time consuming task subject to inter-observer variability.  On the
other hand, data driven approaches such as deep convolutional neural networks
(CNN) struggle to achieve great performances on PET images due to the ab-
sence of available large PET datasets combined to the size of 3D networks. In
this paper, we assemble several public datasets to create a PET dataset large of
2800 scans and propose a deep learning architecture named “2Be3-Net” associ-
ating a 2D feature extractor to a 3D CNN predictor. First, we take advantage of
a 2D pre-trained model to extract feature maps out of 2D PET slices. Then we
apply a 3D CNN on top of the concatenation of the previously extracted feature
maps to compute patient-wise predictions. Experiments suggest that 2Be3-Net
has an improved ability to exploit spatial information compared to 2D or 3D-
only CNN solutions. We also evaluate our network on the prediction of clinical
outcomes of head-and-neck cancer. The proposed pipeline outperforms PET ra-
diomics approaches on the prediction of loco-regional recurrences and overall
survival.  Innovative deep learning architectures combining a pre-trained net-
work with a 3D CNN could therefore be a great alternative to traditional CNN
and radiomics approaches while empowering small and medium sized datasets.

Keywords: Deep learning architecture · 2D and 3D convolutional neural net-
work · PET

1 Introduction 

18 F-fluorodeoxyglucose (FDG) in positron emission tomography (PET) enables to
highlight areas with high glucose metabolism, which is characteristic of  tumor cells.
PET is often associated with computerized tomography (CT) in a PET-CT exam, a
hybrid imaging modality that allows to correlate metabolic and anatomic information
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to improve lesion localisation and characterisation. PET-CT is a useful tool for diag-
nosis, prognosis, staging or re-staging of patients affected by cancer,  and has been
widely used in many studies [1-3].

    Two main approaches are generally considered to exploit these 3D images. A
first approach consists in the extraction of radiomics [4], defined as high-dimensional
imaging features extracted from a segmented region of interest (ROI): the tumor. Ra-
diomics features allow to quantitatively describe a tumor and can be divided into 4
groups: tumor shape, intensity, texture, and statistical features extracted after applying
filters or mathematical transformations to the image. Radiomics can lead to the dis-
covery of new quantitative bio-markers. Standardized Uptake Value (SUV) is a com-
mon metric describing tumor uptake normalized to the injected dose of FDG and pa-
tient's body weight. SUV is used in clinical routine and is a precious indicator to dif-
ferentiate benign from malignant tumors and provides important prognostic and diag-
nostic  information  [5-8].  Several  studies  [9-11]  illustrate  the  interest  of  using  ra-
diomics for applications such as prognosis, non-invasive disease tracking, treatment
response or clinical outcome prediction tasks. Despite their good performances, ra-
diomics  robustness  and  replicability  is  questioned  [12].  One  of  the  most  limiting
points is linked to the difficulty of producing standardised images prior to radiomic
extraction. In addition, tumor segmentation, a requirement for radiomics extraction,
remains a complicated task. This step, either done manually or by a semi-automatic
algorithm, introduces biases and raises several issues related to the experience repro-
ducibility, its consistency and therefore hinders their deployment in clinical routine.

The second main approach consists in the use of convolutional neural networks
that recently demonstrated great performances on vision tasks such as image classifi-
cation, semantic segmentation or object detection. A major contribution to this suc-
cess relies on the massive amount of training data with detailed and accurate annota-
tions. Natural images models often rely on a transfer from large datasets such as the
ImageNet dataset [13]. However, due to data sensitivity, it remains extremely chal-
lenging to build large datasets in the medical imaging domain. As a consequence, no
large PET dataset has been made available so far. 

Different CNN methods were applied on PET images. Because of the 3D nature of
PET images, 3D CNN are logic architectures fitting PET scans dimensionality. How-
ever,  the use of  3D convolutions implies  an increased  number  of  parameters  and
therefore requires large sets to be trained, where a training example corresponds to a
scan. The limited size of PET datasets increases 3D CNN tendency to overfitting and
degrades their performances. Studies applying 3D CNN on PET images therefore rely
on consequent data augmentation to improve their model robustness [14-15]. Other
solutions  reformulated  the  problem in  2D enabling  the  exploitation  of  pre-trained
models or the use of lighter 2D CNN [16-18]. However, using 2D models also implies
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losing rich 3D spatial information, which results in sub-optimal performances. Some
publications [19-21] illustrated that pre-training some of the network layers can help
to  accelerate  training,  convergence  speed  and  increase  the  accuracy  of  the  target
model. Zhou [22] trained a shared 3D encoder associated with 8 decoding branches to
segment different organs. Then they used the encoder as a backbone architecture to
the  classification  of  pulmonary  nodules.  Clark  [23]  trained  several  auto  encoders
(AE),  each  specific  to  an  image  modality  (MRI,  CT,  X-ray).  Training  was  done
through image restoration which allowed the AEs to learn on unlabeled data specific
information in the image such as appearance, texture or context. They transferred the
learned AE on several tasks as brain tumor segmentation or nodule classification and
illustrated an improvement in performances.  They also demonstrated that  their 3D
models outperform their 2D versions, confirming the importance of 3D spatial infor-
mation. 

As illustrated by these recent works, traditional CNN approaches either 2D or 3D
have both advantages and inconveniences. We decided to take advantage of their as-
sets by combining a 2D pre-trained feature extractor with a predictive model such as a
3D CNN. Such a combination hasn’t been studied much yet and could result in a
more stable network than a complete 3D CNN. Moreover, we justify the use of a 2D
pre-trained  network  by  the  information  learned  on  millions  of  images,  where  an
equivalent training from scratch on a PET dataset would not have been possible. The
contributions of this work are summarized as follows:

 We introduce an innovative deep neural network entitled “2Be3-Net” com-
bining a 2D pre-trained model to a 3D CNN

 We illustrated through predicting patient gender that the proposed pipeline
integrates an increased ability to exploit spatial information compared to tra-
ditional CNN

 We evaluated the proposed architecture on the prediction of several clinical
outcomes of the head-neck cancer and illustrated that it  achieves superior
performances on two out of the three tasks compared to PET radiomics

2 Method

We propose an architecture entitled “2Be3-Net”, described in Fig. 1, that enables
exploitation of raw 3D PET scans by associating a 2D feature extractor to a 3D CNN
predictor. K randomly (but ordered) slices are sampled out of the 3D PET image to
form a batch of k 2D input images. A 2D feature extractor is applied on each slice in-
dependently, resulting in k groups of 2D features maps. A concatenation layer is used
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to create one group of 3D features maps that are fed to a 3D classifier to get the final
prediction.

    The feature extractor is a pre-trained 2D model that extracts feature maps out of
2D PET slices.  We choose  to  use a  ResNet-50 [24]  pre-trained  on the  ImageNet
dataset [13]. As the network is trained with 3 channels RGB images, we transform
each PET slice into a gray scale image with 3 channels. Deep neural networks are
known to learn hierarchical features, going from textural features in the network first
layers  to semantic features  in the last layers.  We believe that the textural  features
learned by an ImageNet pretrained network are useful for PET scan images but that
the gap between PET scans and natural images is too high for the semantic features to
be useful. Knowing that, we decided to keep only the 5 first layers of the pretrained
network and, because of our small amount of data, decided to freeze these layers in-
stead of finetuning them.

    We concatenate the feature maps extracted from each slice and apply a predic-
tive model, whose objective is to correlate the spatial and metabolic available infor-
mation to compute patient-wise predictions. The predictive model is a typical frame-
work of a CNN that applies three 3D convolutional blocks to reduce feature map size,
followed by fully connected (FC) layers to realize the prediction.

    PET scans have variable resolutions and numbers of slices. We considered these
constraints  as  opportunities  to  do data augmentation.  We randomly select  a  fixed
number of  slices and crop them. Random slice selection ensures  that  the network
can’t rely on specific slices in the scan, which further increases its robustness, while
cropping decreases the size of the feature maps outputted by the feature extractor.

Fig 1. 2Be3-Net global pipeline
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3 Experiments

3.1 Experimental Setup

Studies applying CNN models on medical images often train and evaluate their mod-
els on small datasets.  In this work, we collected and assembled 10 public datasets
available  in  The Cancer  Imaging Archive  [25-35].  These  datasets  contain  images
from different modalities, pathologies and centers, which implies a large variety of
data characteristics, spatial resolution, range of pixel intensities and acquisition proto-
cols.  We selected PET with attenuated correction (AC) scans and normalized raw
pixel values to SUV scale using the definition1 provided by the Quantitative Imaging
Biomarkers  Alliance (QIBA). Scans containing SUV outliers were dropped before
conversion to NIFTI format, resulting in a PET dataset containing 2834 scans. We
split this dataset in two to create two sub-datasets for specific tasks: gender and clini-
cal outcomes prediction (loco-regional recurrences (LR), distant metastases (DM) and
overall survival (OS)). The clinical outcomes dataset is included in the gender dataset,
but no overlapping exists between the validation set of the clinical outcomes dataset
and the gender training set. 

    The number of input slices is set to k=66 as it corresponds to the number of slices
of the smallest scan. We also chose a resolution of 90x90 pixels per slice. To match
this resolution, we crop the slices at their center. Finally, we apply random flip and
rotation (-10°, +10°) as data augmentation. Models were implemented in Python 3.7
and  Pytorch  1.6  [36].  Experiments  were  conducted  on  a  Ubuntu  18.04  system
equipped with a Nvidia GeForce GTX 1070 with 8 Gb GPU memory and CUDA
11.0.

3.2 Experiment 1: Ability to Exploit Spatial Information

We compare 2Be3-Net capacity to exploit spatial information with a 2D and a 3D
CNN. The 2D model is the 2D version of 2Be3-Net, where we replace the 3D blocks
by their 2D alternative. The feature maps outputted by the ResNet-50 are provided as
input to the 2D blocks and are flattened before applying FC layers. The full 3D CNN
is composed of four 3D convolutional blocks similar to the ones of 2Be3-Net, fol-
lowed by 2 FC layers. Batch size is set to 6, due to limited GPU memory. 

In order to evaluate their capacity to exploit spatial information, we predict patient
gender based on transverse slices. As transverse slices don't provide a whole body vi-
sualization,  models should exploit  the spatial  information contained  in  the feature
maps to compute predictions.  The gender dataset  used in this experiment contains
2459 scans in the training set and 377 in the validation set. The dataset is also imbal-

1 https://qibawiki.rsna.org/index.php/Standardized_Uptake_Value_(SUV)
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anced, as 77.2% of patients are men. We address this issue by using a weighted binary
cross-entropy loss associated with Adam optimizer with an initial learning rate of 1e-
5 and a weight decay of 1e-2. We evaluate models' performances with the area under
the curve (AUC) of receiver characteristic operator (ROC) associated with sensitivity
(SENS), specificity (SPEC) and accuracy (ACC). Experimental results are displayed
in Table 1. The experiment shows that 2Be3-Net achieved a better result than the 2D
version, showing the importance of taking into account the 3D spatial information
while the full 3D CNN struggles in this task.

Table 1. Results of experiment 1

Metric AUC ACC Sensitivity Specificity

2Be3-Net 0.94 0.92 0.91 0.97

ResNet+Conv 2d 0.92 0.91 0.90 0.93

3D CNN 0.7 0.75 0.79 0.61

3.3 Experiment 2: Prediction of Clinical Outcomes

We compare the CNN models previously described to the radiomics approach de-
veloped by Vallières [37] on the prediction of clinical  outcomes of head-and-neck
cancer. To ease comparisons, we compare our results with 2 of their models. The PET
radiomics model applies a logistic regression on different variables specific to each
outcome. The best radiomics model uses random forests to combine PET and/or CT
radiomics to clinical data. On the other side, we decline the 2Be3-Net in two versions.
The first version entitled 2Be3-Net-[WS] takes as input 66 slices randomly selected in
the whole scan. The second version, named 2Be3-Net-[H&N], takes as input 66 slices
extracted from the head-neck region, following the intuition that this area is more in-
clined to contain relevant information for these tasks. As a pre-training, we use the
weights of the models trained on gender prediction to initialize CNN models weights. 

    The clinical outcomes dataset used follows the dataset [37], at the difference of 9
patients (5 in the training set and 4 in the validation set), excluded due to image er-
rors, initial data curation error (detected by TCIA) or missing information to calculate
SUV. The resulting dataset contains 187 scans in the training set and 102 in the vali-
dation  set.  This  dataset  presents  a  pronounced  class  imbalance  (LR:  14.6%,  DM:
13.6% and OS: 18.4%). We apply the same strategy as experiment 1 to address this
issue. Same data augmentation as before is applied to improve network robustness.
Experiment results displayed in Table 2 show that both versions of 2Be3-Net outper-
forms the PET radiomics for LR and OS predictions, but achieves inferior perfor-
mances in DM prediction.
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Table 2. Clinical outcomes prediction results

Metric
ResNet+
Conv2D

3D
CNN

2Be3-Net
[WS]

2Be3-Net
[H&N]

PET 
radiomics

[41]

Best 
radiomics model

[41]

LR

ACC 0.58 0.83 0.6 0.73 0.67 0.67
AUC 0.64 0.69 0.68 0.72 0.53 0.69
SENS 0.71 0.5 0.79 0.71 0.38 0.63
SPEC 0.56 0.89 0.57 0.73 0.7 0.68

DM

ACC 0.70 0.71 0.68 0.76 0.68 0.77
AUC 0.67 0.71 0.78 0.71 0.8 0.86
SENS 0.64 0.71 0.93 0.64 0.85 0.86
SPEC 0.71 0.71 0.64 0.77 0.66 0.76

OS

ACC 0.75 0.68 0.71 0.71 0.64 0.62
AUC 0.72 0.65 0.76 0.74 0.62 0.74
SENS 0.68 0.59 0.86 0.79 0.58 0.79
SPEC 0.76 0.7 0.66 0.69 0.66 0.57

4 Discussion

We first evaluated 2Be3-Net capacity to exploit spatial information through pre-
dicting patient gender based on transverse PET slices. The proposed pipeline achieves
a 0.94 AUC, achieving the best score on this task. We attribute this performance to
the 3D convolutional blocks that exploited the spatial information contained in the
concatenated  feature  maps.  In  the  ResNet+Conv 2D model,  the 3D convolutional
blocks were replaced by 2D convolutional blocks, which prevented the exploitation of
feature maps spatial information. By contrast, we attribute the full 3D CNN poor re -
sults to it's deep architecture and it’s training from scratch, where more training sam-
ples would have been required to improve its results.

We studied the gender predictions made by our CNN and found that 70% of mis-
predicted scans in the validation set have less than 180 slices. These scans only cover
the body upper region and represent 25.2% of the total dataset size. As the whole
body cannot be visualised on these scans, it is difficult for models to identify the gen-
der and therefore are more prone to mispredictions.

We predicted different clinical outcomes of head-neck cancer (LR, DM, OS), and
compared the deep learning models to a radiomics approach. CNN models took ad-
vantage of a pre-training on gender prediction, which improved their performances
compared  to  training  from  scratch.  In  this  experiment,  all  deep  learning  models
achieved better results than PET radiomics on LR and OS predictions. We also note
that both versions of 2Be3-Net achieved at least equivalent AUC and improved sensi-
tivity compared to the best radiomics model. These results seem promising as the best
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radiomics model combined information from PET-CT scans associated with clinical
data while our models only had access to the PET scan. The improved sensitivity im-
plies that the proposed 2Be3-Net correctly identified more examples of the minority
class than the radiomics models. It is also important to note that specificity wasn’t
compromised  while  sensitivity  increased.  We  also  note  that  2Be3-Net-[H&N]
presents results more stable compared to 2Be3-Net-[WS] as the gap between sensitiv-
ity and specificity decreased. This difference can be attributed to the slice selection
area, where 2Be3-Net-[H&N] used slices selected in the head-neck region, and was
therefore able to focus on tumor related information. However, CNN models achieved
inferior results on DM prediction compared to the radiomics models. The radiomics
models were specific to each outcome, and reached their best score on DM prediction.
Thus, we attribute radiomics superior results on DM prediction to the specific design
of the radiomics DM model. On the other hand, both 2Be3-Net versions were de-
signed to predict all clinical outcomes and achieved stable results on those.

    In the light of these experimental results, alternative deep learning architectures
seem promising alternatives to radiomics and CNN approaches. The proposed 2Be3-
Net accepts as input 3D PET scans with SUV conversion as the only preprocessing
step, and is able to predict clinical outcomes of head-neck cancer from a training done
on a small size dataset.

5 Conclusion

This paper introduces 2Be3-Net, a new architecture allowing direct exploitation of
3D PET scans through the association of a 2D pre-trained network with a 3D CNN,
which enables exploitation of spatial information between the feature maps extracted.
We compared 2Be3-Net to a traditional 2D CNN, a 3D CNN and a radiomics ap-
proach on the prediction of clinical outcomes of head-neck cancer. Experiments illus-
trated that the proposed architecture is a good alternative to classic CNN models and
radiomics approaches. Moreover, it accepts as input entire PET scans requiring few
preprocessing steps. 

We used a ResNet-50 pre-trained on natural images as a feature extractor. Future
works could focus on using a model pre-trained on PET images. In this matter, auto-
encoder architectures seem promising as they can be trained in an unsupervised man-
ner, which solves the requirement of large annotated datasets and could further im-
prove the relevance and quality of the feature maps extracted.
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