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ABSTRACT
The General Data Protection Regulation (GDPR) requires data con-
trollers to implement end-to-end compliance. Controllers must
therefore ensure that the terms agreed with the data subject and
their own obligations under GDPR are respected in the data flows
from data subject to controllers, processors and sub processors (i.e.
data supply chain). This paper seeks to contribute to bridge both
ends of compliance checking through a two-pronged study. First,
we conceptualize a framework to implement a document-centric
approach to compliance checking in the data supply chain. Second,
we develop specific methods to automate compliance checking of
privacy policies. We test a two-modules system, where the first
module relies on NLP to extract data practices from privacy poli-
cies. The second module encodes GDPR rules to check the presence
of mandatory information. The results show that the text-to-text
approach outperforms local classifiers and enables the extraction
of both coarse-grained and fine-grained information with only one
model. We implement full evaluation of our system on a dataset of
30 privacy policies annotated by legal experts. We conclude that
this approach could be generalized to other documents in the data
supply as a means to improve end-to-end compliance.

CCS CONCEPTS
•Applied computing→ Law; •Computingmethodologies→
Information extraction; Machine learning; • Social and pro-
fessional topics→ Privacy policies; • Security and privacy→
Usability in security and privacy.
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1 INTRODUCTION
It has become widely acknowledged that complying with data pro-
tection laws, particularly the European General Data Protection
Regulation (GDPR), is the most difficult compliance challenge or-
ganizations face today across industries [1]. Moreover, technology
became the most important compliance cost for organizations, as
they turned to specialized technologies to carry out compliance
tasks such as document review, regulatory checks and operational
audits [1]. Despite the increasing interest in technology as a com-
pliance tool in data protection, there is not yet a comprehensive
conceptual framework characterizing the tasks required to verify
compliance in the entire data supply chain (i.e., end-to-end compli-
ance), and how current methods can contribute to address them.

This paper intends to contribute to both of these issues. First, we
lay down a framework to implement andmonitor GDPR compliance
in the data supply chain through a document-centric approach.
We define three key tasks of compliance checking based on the
function and content of the document: (1) document to regulation,
(2) document to document, and (3) document to operations. We
apply this framework to analyze the compliance function of privacy
policies in the data supply chain and define the tasks required to
determine if a privacy policy is compliant with the GDPR.

Second, we develop and test several methods to verify compli-
ance of privacy policies to the GDPR by leveraging the advantages
of both machine learning and rule-based approaches. In particu-
lar, we build a two-modules system to verify the completeness of
privacy policies with regards to mandatory information. The first
module automatically extracts coarse-grained and fine-grained data
practices, while the second module analyzes extracted data prac-
tices and checks the presence of mandatory information according
to the provisions of the GDPR. We make use of the OPP-115 dataset
[48] for training and evaluation of our models. We treat the extrac-
tion of data practices as a Hierarchical Multi-label Classification
(HMTC) task and experiment with two different approaches: local
classifiers and text-to-text. Our proposed text-to-text method has
several advantages over local classifiers, including extraction of
additional information and better scalability.

Our contributions are the following:
• we present a theoretical framework to implement automated
GDPR compliance in the data supply chain;

• we provide formal and substantive approach to verify com-
pliance of privacy policies with the GDPR;

https://doi.org/10.1145/3462757.3466081
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• we develop a combined rule-based and machine learning
approach to experiment with automated formal compliance
checking of privacy policies with the GDPR;

• we propose a text-to-text approach for HMTC using transfer
learning and multi-task learning ;

• additionally, we extract the span of text from a privacy pol-
icy corresponding to the fine-grained data practices, which
provides better explainability of the classification results;

• we further annotate a dataset of 30 privacy policies with
the presence of mandatory information, in order to fully
evaluate our two-modules system of compliance checking;

• finally, we release a public repository of the dataset, imple-
mentations and the fine-tuned T5-11B model on OPP-1151.

This paper is organized as follows. Section 2 provides an overview
of the related work. Section 3 lays down a general compliance
framework to automate GDPR compliance and applies it to privacy
policies. Section 4 describes the development of data practices ex-
traction algorithms and its evaluation results. Section 5 presents
the rule-based system, which verifies the presence of mandatory
information, and its evaluation on an annotated dataset.

2 RELATEDWORK
The Information Commissioner’s Office (ICO), the Data Protection
Authority of the United Kingdom, observes that overall compli-
ance with the GDPR is jeopardized by the "opaque nature" of the
data supply chain, which is poorly documented, and generally fails
to comply with the GDPR’s accountability principle [2]. The ICO
further points out that controllers and processors should not limit
compliance to entering into contract and producing legal docu-
ments. They must monitor processing activities, and conduct audit
to ensure that appropriate technical and organizational measures
are in place throughout the data supply chain [2].

Most research in AI and law studying GDPR compliance has
focused on the relations between data subject and data controllers,
rather than on the compliance challenges in the data supply chain
[3, 6, 11, 54]. More recently, the BPR4GDPR project started working
on a compliance ontology specification that supports end-to-end
compliance [37] and which can contribute to address some of the
operational challenges raised by the ICO. A compliance framework
is provided in [40] for specific documents in the supply chain such
as the data protection impact assessment (DPIA).

2.1 Model-based Compliance Checking
The AI and law research community has developed model-based
methods for automated compliance checking, such as legal ontolo-
gies that support legal reasoning via logic programming [9, 12, 13,
15, 16, 19, 30, 44, 45]. However, even though most legal rules can
be described in logic programming, these methods face two main
challenges when applied to real-life cases:

• Knowledge acquisition bottleneck [17]: Logic programming
requires the encoding of facts into predicate form, but such
an encoding would be very cumbersome for each data pro-
tection documents in the data supply chain.

1https://github.com/smartlawhub/Automated-GDPR-Compliance-Checking

• Open texture of legal language [46]: Privacy concepts can be
quite abstract, and their evaluation arduous, as it is impossi-
ble to define a finite set of rules for all possible applications.
For example, the storage limitation principle states that per-
sonal data must not be kept "longer than is necessary for
the purposes for which the personal data are processed."(Art.
5.1(e)). This principle does not define specific time limits that
can be evaluated easily.

To solve the aforementioned problems, we employ natural lan-
guage processing (NLP) techniques to automatically extract infor-
mation from the data supply chain documents. Likewise, authors of
[44] suggest using NLP to extract information from legal documents
according to their UML model of the GDPR, to automatically con-
struct their model-based representation. A large and growing body
of literature uses machine learning and NLP algorithms to extract
privacy information from legal documents, however, it only con-
siders privacy policies and does not yet deal with other documents
of the data supply chain, such as DPA and DPIA.

2.2 Information extraction from privacy
policies

Privacy policies are long documents that are difficult to read for
data subjects. Empirical studies have been conducted to study and
measure the ambiguity and vagueness of privacy policies [5, 20, 24,
36]. Efforts have been made to decrease these deficiencies [42, 51],
by using classification techniques to extract data practices from
the text and represent them in a user-friendly interface. Other
approaches focus on the extraction of one specific type of data
practice, such as "opt-out choice" in [38].

More andmoremethods are developed to analyze the compliance
of privacy policies with the GDPR. A variety of NLP tools such as
word embeddings are used in [7, 43] to verify the completeness of
privacy policies according to the rules set out by the GDPR. The
CLAUDETTE project [6] extracts clauses that are problematic with
respect to the GDPR. In a different project [23], privacy policies were
analyzed in a large-scale setting to study the effect of the GDPR on
their provisions. For instance, the comparison between pre-GDPR
and post-GDPR versions of 6,278 English privacy policies showed
that the GDPR caused textual changes of the privacy policies, such
that their appearance improved, their length increased, and that
they cover more data practice categories.

A great deal of previous research on privacy policies relies on
supervised machine learning methods, which require datasets of
annotated privacy policies. However, there are very few such pub-
licly released datasets. In our work, we use OPP-115 [48] – a corpus
of 115 privacy policies annotated with both coarse-grained and
fine-grained data practices. Several works used OPP-115 to train
machine learning algorithms on the task of extracting data prac-
tices [14, 25, 28, 29, 32]. PrivacyQA [35] is another publicly available
dataset of 1,750 questions about the privacy policies of mobile ap-
plications, which is used to train question-answering algorithms.
A serious limitation of the publicly available datasets is that their
annotation schemes contain few concepts aligned with the GDPR.
A connection between the data practices identified in OPP-115 and
the GDPR was presented in [31], which revealed that the principle
of accountability of Article 5 is absent from OPP-115 concepts.

https://github.com/smartlawhub/Automated-GDPR-Compliance-Checking
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2.3 Transfer learning in NLP
Until very recently, in computer science research, general NLP
tasks such as text classification were commonly handled with ar-
chitectures based on word embeddings [27], Convolutional Neural
Networks (CNN) [21] and Recurrent Neural Networks (RNN) [18].
RNN-based solutions, which achieved state-of-the-art results at the
time, are, however, limited when it comes to dealing with long text,
due to their sequential nature. Moreover, this nature stands in the
way of most parallel training methods, therefore limiting the ability
to decrease training time. Encoder-decoder architectures – com-
monly used for sequence to sequence problems – have inspired the
attention-based transformers [47], and these architectures managed
to go beyond the limitations of sequential networks.

The use of transformers is gradually becoming the state of the
art of NLP. Indeed, they are effective in the variety of tasks, includ-
ing masked token prediction, next sentence prediction, question
answering, machine translation, summarization, sentiment analysis
and classification [10, 33]. The fact that transformers are trained in
an unsupervised way, which reduces the reliance on labeled data
and allows the use of a larger pool of text, explains the increased
performance. Transformers are very effective in transfer learn-
ing, allowing researchers to pretrain them with large amounts of
general-purpose texts and then to fine-tune them for their specific
tasks with good results, less effort, and less labeled data. Several
works explored the potential of fine-tuning transformers on OPP-
115 to extract coarse-grained data practices [28, 29].

Similarly to [14], we extract both coarse-grained and fine-grained
data practices from privacy policies. And similarly to [28, 29], we
use variations of the transformer architecture as base for fine-tuning
on OPP-115. Furthermore, our best-performing model is able to
extract the fine-grained data practices with corresponding spans of
text from the policy, thus improving explainability of the results.

3 A FRAMEWORK FOR COMPLIANCE
CHECKING IN THE DATA SUPPLY CHAIN

New data protection and privacy regulations around the world have
empowered data subjects vis-à-vis data controllers (EU fundamental
rights, California Privacy laws, Canada PIPEDA, Brazil, etc.). As
mentioned earlier, the data supply chain (i.e., the way data flows
from data subject to controllers, processors and sub processors)
is opaque and remains hard to monitor, ultimately hindering the
effectiveness of data-subject rights.

At the operation level, the data supply chain is characterized by
the high volume of data flows across processors and jurisdictions
for tasks as varied as storage, pre-processing, producing analyt-
ics, implementing AI-methods, generating visualizations, etc. In
addition to regulations, these flows are regulated by fragmented
legal artifacts such as contracts, data protection addendum (DPA),
technical and operational measures (TOMs), etc., which are often
of restricted access, lack interoperability and have low operational
efficiency, ultimately obstructing compliance with the GDPR.

To help data controllers use technological tools to improve com-
pliance with the GDPR, we draw a general conceptual framework
to automate compliance checking in the data supply chain based
on a document-centric approach and lay down the tasks required
to achieve end-to-end compliance.

3.1 Compliance Checking Framework: A
Document-centric Approach

The starting point of our compliance framework is the set of doc-
uments establishing the conditions and processing activities that
data controllers and processors are intended to and effectively carry
out (hereafter compliance documents), such as privacy policies, con-
tracts, DPAs, TOMs, DPIAs, etc. This is a reasonable starting point
as the GDPR establishes a document-centric approach to compli-
ance, entrusting documents with different functions in relation
to the obligations of data controllers and processors. First, it re-
quires data controllers to properly demonstrate compliance with
the Regulation ("principle of accountability", Art. 5.2). Second, data
controllers shall inform data subjects about the processing activities
they carry out (Art. 12, 13, and 14) and document instructions they
give to data processors (Art. 29). Third, sub-processors must obtain
a written authorization from controllers to further subcontract a
processing activity, and must also document their instructions (Art.
28.2 and 28.3). Lastly, controllers and processors must maintain a
record of processing activities (ROPA) (Art. 30).

Hence, we define GDPR compliance checking as the assessment
of the provisions of a compliance document in relation to: (1) a
regulation, (2) another document in the supply chain, and (3) an op-
eration. These dimensions define the three key tasks of compliance
checking in the data supply chain under the GDPR.

(1) Document to Regulation Compliance: The provisions of a
compliance document are assessed against the regulation.
For example, according to the GDPR, privacy policies must
provide certain mandatory information to data subjects (Art.
12, 13 and 14). We further divide this compliance task into
two sub-tasks:
• Formal Compliance Checking: whether the document ful-
fils its informative function, i.e., is the mandatory informa-
tion included in the document. For example, this sub-task
could consist of the verification of the existence of infor-
mation about data retention (Art. 13.2(a)).

• Substantive Compliance Checking: whether the document
fulfils its accountability function, i.e., does the information
provided comply with the GDPR. For example, this sub-
task could consist of the verification that the data retention
period is lawful, i.e., it does not exceed the necessary time
as required by Article 5.1(e).

(2) Document Chain Compliance: The supply chain documents
are assessed against themain contractual standards or against
documents with a higher hierarchy in the chain. Using the
previous example on data retention, two assessments could
be done on (i) the contract between the data controllers and
the data processors to verify if the agreed data retention
period corresponds to the one provided in the privacy pol-
icy, and on (ii) the ROPAs of both the data controllers and
processors that contain the effective date of erasure (Art.
30.1).

(3) Operational Compliance: This task consists of assessing the
adequacy between operations, documents, and regulations.
For the previous example, this task would imply verifying if
the data has been effectively deleted from the servers of data
processors and controllers when the retention period ends.
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3.2 The compliance of privacy policies
Privacy policies are the compliance documents that appear at the
top of the data supply chain. Hence, we first apply our framework
to analyze privacy policies’ compliance in the data supply chain.
This paper seeks to define the tasks required to determine a privacy
policy’s formal and substantive compliance with the GDPR.

The GDPR does not explicitly mention privacy policies, but data
controllers widely use them. Their main function is to provide
mandatory information to data subjects according to Articles 13
and 14. The absence of any part of this information renders the
privacy policy non-compliant. Moreover, the GDPR requires pri-
vacy policies to use plain and clear language so individuals can
understand how their personal data are processed, provide their
consent and exercise their rights. Consequently, the tasks to verify
the formal compliance of privacy policies are:

• Check the presence of each mandatory information accord-
ing to Articles 13 and 14.

• Check the readability and clarity of the language used in the
privacy policy.

The substantive compliance checking of privacy policies consist of
verifying that the data processing complies with the data protection
rules (e.g, fair and transparent processing of Art. 5, and lawfulness
of the processing of Art. 6). For example, a privacy policy must
specify the legal basis of the processing according to Article 13.1(c),
but it must also demonstrate that this legal basis complies with
Article 6 requirements on the lawfulness of the processing (e.g., if
the legal basis is consent, the controller must ensure that consent
has been given for one or more specific purposes.).

In this study, we automate the first task of formal compliance
checking of privacy policies. In the following sections, we describe
howwe combined rules and machine learning to check the presence
of mandatory information in privacy policies automatically. The
end-users of such a system would be lawyers or data protection
officers who review large numbers of privacy policies to check their
compliance with the GDPR. Another type of end-user would be
project managers in small companies who lack the legal knowledge
to ensure privacy policies’ compliance.

4 EXTRACTION OF DATA PRACTICES FROM
PRIVACY POLICIES

Ensuring both the compliance of documents and data processing ac-
tivities is becoming more burdensome to companies due to several
challenges. We focus on the challenge posed by the large number
of documents that data protection officers need to review to guar-
antee compliance. We suggest using natural language processing
technologies to assist data protection officers in performing the
compliance checking tasks. NLP could help to extract compliance
information from unstructured compliance documents and save it
into structured formats such as XML or RDF to unlock use cases
such as automated compliance checking.

In this paper, we describe our experiment in automating formal
compliance of privacy policies. We first train a machine learning
algorithm to extract from privacy policies information describing
the company’s data practices.We then use the extracted information
as input to a rule-based system that encode Articles 13 and 14.

4.1 OPP-115 : Training Dataset of Online
Privacy Policies

For our task we make use of the Usable Privacy Policy Project’s
Online Privacy Policies (OPP-115) corpus, introduced by [48] which
contains detailed annotations made by Subject Matter Experts
(SMEs) for the data practices described in a set of 115 website
privacy policies.

At a high level, annotations fall into one of ten data practice
categories:

(1) 1𝑠𝑡 Party Collection/Use: What, why and how information
is collected by the service provider.

(2) 3𝑟𝑑 Party Sharing/Collection: What, why and how informa-
tion shared with or collected by third parties.

(3) User Choice/Control: Control options available to users.
(4) User Access, Edit, & Deletion: If/how users can access, edit

or delete information.
(5) Data Retention: How long user information will be stored.
(6) Data Security: Protection measures for user information.
(7) Policy Change: Informing users if policy information has

been changed.
(8) Do Not Track: If and how DNT signals for online tracking

and advertising are honored.
(9) International & Specific Audiences: Practices pertaining to a

specific group of users.
(10) Other: General text, contact information or practices not

covered by the other categories.
According to the dataset creators, the best agreement between SMEs
was achieved on Do Not Track class with Fleiss’ Kappa equal to 91%,
whereas the most controversial class was Other, with only 49% of
agreement [48]. We further decompose the latter category into its
attributes – “Introductory/Generic”, ”Privacy Contact Information”
and “Practice Not Covered” – resulting in 12 categories.

Figure 1 depicts a fragment of OPP-115 taxonomy: for each class
(grey shaded blocks), a set of lower-level privacy attributes is as-
signed (20 in total, dark blue shaded blocks), with specific values
corresponding to each attribute. For example, the attribute “Per-
sonal Information Type” designates the different types of personal
information mentioned in the text, as can be seen from the annota-
tions in Figure 2 from the IMDb policy 2, annotated with “1𝑠𝑡 Party
Collection/Use” category.

OPP-115 comprises 3,792 segments, each segment labeled with
one or more classes out of 12. The SMEs produced a total of 23K
annotations of categories. In aggregate, these categories were asso-
ciated with 128K values for attributes and 103K selected spans of
policy text. To the extent of our knowledge, this is the first effort to
leverage these spans to extract information from privacy policies.

We split the OPP-115 dataset on a policy-document level into
3 sets: 65 policies are used for training, 35 for validation and 30
policies are kept as a testing set.

4.2 Problem formulation
The taxonomy of data practices is organized in a class hierarchy that
we model as a Directed Acyclic Graph (DAG) shown in Figure 3.

2To retrieve the exact source used:<https://web.archive.org/web/20200526092253if_
/https://www.imdb.com/privacy#auto>(“Automatic Information” sub-section.)

https://web.archive.org/web/20200526092253if_/https://www.imdb.com/privacy#auto
https://web.archive.org/web/20200526092253if_/https://www.imdb.com/privacy#auto
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Figure 1: The privacy taxonomy of [48]. The top level of the hierarchy (grey shaded blocks) defines coarse-grained data practices or privacy
categories. The lower level defines a set of privacy attributes (blue shaded blocks), each assuming a set of values. We show a subset of the
taxonomy for clarity and space considerations.

Figure 2: Annotated excerpt from IMDb privacy notice

We choose a DAG structure instead of a tree structure because
some attributes are associated with more than one category, i.e.,
have more than one parent. For example, the attribute “Personal
information type” belongs to both “1𝑠𝑡 Party Collection/Use” and
“3𝑟𝑑 Party Collection/Use” categories.

The training dataset is a corpus C of N privacy policies 𝑃𝑖 : Y =

{𝑃1, ..., 𝑃𝑁 }. Each privacy policy 𝑃𝑖 is a set of annotated segments:
𝑃𝑖 = {(𝑠𝑖1, 𝑦𝑖1), ..., (𝑠𝑖𝑛, 𝑦𝑖𝑛)} where 𝑦𝑖 ⊆ Y = {𝜆1, ..., 𝜆𝐿} such that
𝜆𝑖 is a path in the DAG that starts from category 𝑐 and ends at leaf
node 𝑣 .

Figure 3: The DAG structure of the OPP-115 taxonomy

We treat predicting the categories of data practices and the val-
ues of each attribute as an HMTC task. There are three methods
to solve hierarchical text classification tasks: flat, local, or global
methods [39]. The flat method behaves like traditional classifica-
tion algorithms by ignoring the labels’ hierarchy and predicting
only classes at the leaf nodes. Local methods take into account the
hierarchy by training independent local classifiers. Global methods
train a single classifier for all classes. In this paper we conduct two
experiments, where we first build a local multi-label classifier, and
then cast the HMTC task to two text-to-text tasks.

4.3 Local classifiers approach
This approach is inspired by Polisis [14], where authors build a local
multi-label classifier for the higher level categories, and one local
multi-label classifier per attribute to predict their values. Predictions
are made in a top-down order: once the categories of a segment are
inferred, the second step predicts the values of attributes – children
of the predicted categories. For example, if the first-level classifier
predicts the “Data Retention” and “Data Security” categories, only
the local classifiers corresponding to the attributes “Retention Pe-
riod”, “Retention Purpose”, “Personal Information Type”, “Security
Measure” are chosen in the second step.

Authors of [14] are using the same base classifier for all the multi-
label classifiers. In this paper we reproduce their work by using
CNN as the base classifier. We use the same architecture of CNN
and hyperparameters. The CNN classifier is composed of one convo-
lutional layer with a ReLU activation, followed by a dense layer and
a ReLU activation. The last layer is a dense layer with a sigmoid ac-
tivation. We tokenize segments using PENN Treebank tokenization
in NLTK [41]. Tokens are mapped into a 300-dimensional space via
an embedding Layer. We used FastText to train Word embeddings
on 130,326 privacy policies [54].

Recently, the state-of-the-art results have been achieved by trans-
formers. We reproduce the framework of Polisis, using XLNet [49]
instead of CNN as a base classifier. XLNet is a transformer language
model, which extends Transformer-XL [8]. It is an auto-regressive
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language model, pretrained on all the permutations of the input
sequence. We fine-tune the XLNet3 on 21 tasks – one task for pre-
dicting the categories, and the rest – for each attribute’s values.

4.4 Text-to-Text approach
In this section we explain how we use T5 [33] to solve HMTC. T5 is
a pretrained language model based on the transformer architecture.
T5 has two main differences in comparison to XLNet. First, it is
pretrained on a multi-task mixture of unsupervised and supervised
tasks. Second, each task is converted into a text-to-text format. We
adopt T5 both for its top results on NLP benchmarks and for its
text-to-text nature.

The local classifiers approach has two main drawbacks. First, it
trains the set of local classifiers independently. Second, the number
of local classifiers grows linearly with the size of the label hierarchy.
These limitations motivate this second approach, where we convert
the HMTC task into two text-to-text tasks – one for each level of
the label hierarchy – to better capture the dependencies of labels
belonging to the same level. Moreover, by training one unique
algorithm for each level, we ensure that the number of classifiers
scales linearly with the hierarchy’s depth.

Thanks to the text-to-text nature of T5, we can simplify HMTC
into two text-to-text tasks shown in Figure 4. To prepare the task of
categories prediction, we prepend the "categories prediction: " prefix
to the text of segments and generate one sequence of categories
separated by "; " as shown in Figure 5. The lists of categories were
sorted in alphabetical order so that they have the same order across
training examples, as advised by the authors of [33].

The second task’s objective is to predict the values of the at-
tributes of a category from an input segment, as well as to generate
the spans of texts related to the predicted values. This task is similar
to a reading comprehension task [34], where the question is "what
is the value of the attribute?", and the context paragraph is the pair
(segment, category). So we format it into a text-to-text task, similar
to how the authors of T5 formatted the reading comprehension
dataset SQuAD (see Figure 6).

Once we format the tasks, we fine-tune the largest available T5 of
11B parameters on these tasks. We try two fine-tuning methods: the
first method (advised by [33]) is to fine-tune on each task indepen-
dently, and the second method is to fine-tune in a multi-task setting
on a mixture of both tasks to capture the global labels hierarchy.
We fixed the hyperparameters of input sequence length and output
sequence length to 512 and the batch size to 16, and performed a
grid-search over the learning rate. The model was fine-tuned each
time for 25,000 steps. Interestingly, the best-performing learning
rate is the same (4e-3) for all the models and tasks.

4.5 Evaluation measures
Evaluation of multi-label classification: We use precision, re-

call, and F1-score metric to evaluate the extraction of both coarse-
grained and fine-grained data practices from privacy policies seg-
ments. Since we are in a multi-label classification setting, we adapt
the traditional single-label metrics to this setting by using the label-
based metrics [52]: precision, recall, and F1-score for the j-th class
label 𝑦 𝑗 are defined as follows:

3We used the pretrained model available at Hugging Face models hub.

Table 1: Results of categories prediction by the local classi-
fiers approach

Categories CNN XLNet
P R F1 P R F1

Introductory/Generic 74 40 52 76 54 63
Policy Change 85 60 71 73 65 69
Specific audiences 90 77 83 85 80 82
Privacy Contact Info 87 52 65 84 75 79
1𝑠𝑡 Party Collection 67 87 76 84 81 83
Data Retention 52 39 45 58 36 44
3𝑟𝑑 party sharing/collection 71 85 78 76 87 81
User Choice/Control 45 79 58 66 69 67
Practice Not Covered 39 39 38 40 44 42
Data Security 79 48 60 77 68 72
Access, Edit, Deletion 87 35 50 75 72 74
Do Not Track 100 29 45 93 100 96
Macro-Average 72 55 62 76 71 73

𝑃 𝑗 =
𝑇𝑃 𝑗

𝑇𝑃 𝑗 + 𝐹𝑃 𝑗
𝑅 𝑗 =

𝑇𝑃 𝑗

𝑇𝑃 𝑗 + 𝐹𝑁 𝑗
𝐹1𝑗 =

2 ∗ 𝑃 𝑗 ∗ 𝑅 𝑗

𝑃 𝑗 + 𝑅 𝑗

𝑇𝑃 𝑗 , 𝐹𝑃 𝑗 , 𝑇𝑁 𝑗 and 𝐹𝑁 𝑗 are the number of true positive, false pos-
itive, true negative and false negative test examples with respect
to class label 𝑦 𝑗 . To measure the global performance over a set of
labels we compute the macro-average of each metric by averaging
on the set of labels4.

For the task of values prediction, we only report the result of
attributes and values that we use to automate formal compliance
checking of privacy policies, such that the reported metrics are the
macro-average over the values necessary for compliance checking.

Evaluation of span extraction: We use the F1-score, as in the
SQuaD dataset [34], to evaluate the extraction of spans associated
with the values by comparing the ground truth target to the gener-
ated target.

4.6 Results and Discussion
Local classifiers approach: In Table 1, we report the results of

the evaluation of the CNN and XLNet experiments on categories
prediction.We present the results of CNN and the XLNet for the task
of values prediction in Table 2. XLNet has superior performance
comparing to CNN for the task of categories predictions. However,
it has significantly lower performance than CNN for the second
task, because there are enough examples to fine-tune XLNet for
categories prediction but not enough for values prediction.

Text-to-text approach: We report the results of evaluating the
two tasks on the test dataset in Table 3, Table 4, and Table 5. We
observe that the individual fine-tuning and multi-task fine-tuning
have a close recall for both tasks, but they differ significantly in
precision. By fine-tuning each task separately, we obtain a 2.6%
precision improvement for the task of categories prediction and
4It is worth noting that we don’t use the same precision, recall and F1-score as in [14]
where they use the macro-average of each metric predicting the presence and absence
of the label.

https://huggingface.co/xlnet-base-cased
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Figure 4: The hierarchical multi-label classification of OPP-115 is converted into two text-to-text tasks. The first task is to predict categories
of data-practice from an input segment. We then retrieve the attributes of each predicted category to feed them and their category as input to
the second task. The second task is to predict the values of the input attributes and to generate the corresponding span of text (highlighted).

Figure 5: Input example to train T5 for categories prediction

Figure 6: Example of an input to train T5 for prediction of
attributes’ values and the corresponding spans of text

Table 2: Results of values prediction by CNN and XLNet
for attributes used in compliance checking. We report the
macro-average over the values of each attribute.

Attribute CNN XLNet
P R F1 P R F1

action first-party 44 47 45 16 33 21
does/does not 93 77 84 84 82 83
personal information type 73 58 64 56 49 52
purpose 74 56 64 74 64 69
retention period 79 62 69 50 11 18
access type 61 51 55 30 26 27
Macro-average 72 60 65 51 44 47

4.5% precision improvement for values prediction. This behavior

Table 3: Results of categories prediction by T5

Category Multi-task Fine-tuning Task 1 Fine-tuning
P R F1 P R F1

Introductory/Generic 68 61 64 69 58 63
Policy Change 82 67 74 82 69 75
Specific audiences 94 84 88 91 85 87
Privacy Contact Info 81 82 82 79 69 74
1𝑠𝑡 Party Collection 88 87 87 90 85 87
Data Retention 65 47 55 77 52 62
3𝑟𝑑 party sharing/collection 83 86 85 85 85 85
User Choice/Control 65 60 62 66 64 65
Practice Not Covered 46 45 46 49 47 48
Data Security 73 66 69 78 70 74
Access, Edit, Deletion 82 84 83 78 76 77
Do Not Track 100 75 85 100 62 76
Macro-Average 77 70 73 79 69 73

Table 4: Results of values prediction for attributes used in
compliance checking by T5. We report the macro-average
over the values of each attribute.

Attribute Multi-task Fine-tuning Task 2 Fine-tuning
P R F1 P R F1

action first-party 55 56 55 62 58 60
does/does not 90 78 83 91 83 87
personal information type 72 61 66 73 63 68
purpose 72 65 69 74 67 70
retention period 53 47 50 50 25 33
access type 62 58 60 71 70 70
Macro-average 67 61 63 70 61 65

where separate models trained on each task outperforms the multi-
task model is coherent with previous findings [4, 26, 33].

The performance of span extraction, presented in Table 5 is
low in comparison with the performance of transformers models
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on similar tasks such as reading comprehension or named entity
recognition, which might be due to the relatively small number of
training examples given to T5.

Table 5: Results of evaluation of span extraction by T5.

Multi-task Fine-tuning Task 2 Fine-tuning
P R F1 P R F1

64 57 52 65 59 54

Local classifiers approach vs. text-to-text approach: We present
in Table 6 the macro-average of the different experiments for both
tasks – categories and values prediction. Fine-tuning separate mod-
els of T5 for each task achieves the highest F1 score. Both XLNet
and T5 of the transformers family significantly outperform CNN
on the first task. However, the performance of transformers on the
task of values prediction is at its best close to CNN’s performance.

The local classifiers approach requires fine-tuning separate mod-
els for each attribute. Consequently, it decreases the number of
training examples seen by each model, explaining the significant
performance gap between task 1 and task 2. This performance gap
is more important for XLNet than CNN, which could result from
the high number of parameters of XLNet we need to fine-tune in
comparison to the CNN architecture. T5 has even more parameters
than XLNet, but its performance does not drop as significantly as
XLNet. We can explain this difference by the nature of the text-to-
text approach where we fine-tune one model of T5 on the prediction
of the values of all the attributes instead of individual fine-tuning
for each attribute. Hence, T5 sees much more examples than XLNet.

Table 6: Macro-Average of precision, recall and F1-score for
categories prediction (Task 1) and values prediction (Task 2)
by the four models.

Approach Task 1 Task 2
P R F1 P R F1

Local classifiers CNN 72 55 62 72 60 65
XLNet 76 71 73 51 44 47

Text-to-Text: T5 Multi-task FT 77 70 73 67 61 63
Individual FT 79 69 73 70 61 65

5 RULE BASED COMPLIANCE CHECKING
5.1 From rules to code
This section describes our rule-based approach to automate the
formal compliance checking of privacy policies. Privacy policies
must comply with Articles 12, 13, and 14 of the GDPR. We limit
our experiments to Articles 13 and 14, listing the mandatory in-
formation that privacy policies must contain, for which we can
use information extraction algorithms, described in the previous
section. To verify compliance with Article 12, we will need to de-
velop other algorithms to assess how the mandatory information is

communicated to data subjects (language complexity, length of sen-
tences, etc.). Legal experts manually converted rules from Articles
13 and 14 into code using the OPP-115 taxonomy. As the OPP-115
taxonomy does not cover all the concepts of the GDPR, we only
encoded the articles presented in the second column of Table 7.

Table 7: List of mandatory information from articles 13 and
14 of the GDPR encoded by us using the OPP-115 taxonomy.

Mandatory information Article Reference

Identity of the controller 13 1.a; 14 1.a
Contact details of the controller 13 1.a; 14 1.a
Purpose of the processing of personal data 13 1.c; 14 1.c
Right to data portability 13 2.b; 14 2.c
Right to erasure 13 2.b; 14 2.c
Right to rectification 13 2.b; 14 2.c
Right to access 13 2.b; 14 2.c
Data retention period or the criteria of retention period 13 2.a; 14 2.a
The recipients or categories of recipients of the personal data 13 1.e; 14 1.e
Categories of personal data 14 1.d

We plan to build a GUI for legal experts to convert compliance
rules into code. To do so, we choose JsonLogic to serialize obtained
rules as a JSON file. JsonLogic provides a simple mechanism to share
rules between the front-end and back-end of a GUI. It comes with a
parser that we use to build a first-order logic inference engine with
Python. In Figure 7 we present an example of a rule encoded with
JsonLogic and OPP-115 taxonomy. We consider that the purpose of
processing personal data is mentioned in the privacy policy if there
is at least one data practice whose category is “1𝑠𝑡 Party Collection”
and the attribute "Purpose" has a value different from “Unspecified”.

{"some":[{"var":"data_practices"},
{"and":[{"==":[{"var":"category"},"first_party"]},

{"!=":[{"var":"attributes.purpose"},"unspecified"
]}]}]}

Figure 7: Example of encoding a GDPR rule with JsonLogic.
The rule states the obligation of mentioning the purpose of the
processing of personal data.

5.2 Evaluation
The OPP-115 taxonomy was created before the entry into force of
the GDPR. To evaluate its capacity to capture GDPR concepts, we
create a dataset of 30 privacy policies where legal experts indicate
each mandatory information’s presence. We use this dataset as
ground truth of mandatory information listed in Table 7.

The ground truth dataset contains two types of privacy policies:
15 privacy policies are from the OPP-115 dataset and 15 post-GDPR
privacy policies are from the corpus released by [23]. We extract
data practices from privacy policies and feed them to the inference
engine to check for the presence of each mandatory information.
For the first type of privacy policy, we use the ground truth data
practices extracted manually by legal experts from [48]. For the
second type, we use data practices predicted by T5. Therefore, any
error on the first type of privacy policies will not be due to machine
learning errors but due to the OPP-115 taxonomy used to encode
mandatory information.
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We report metrics of both the absence and presence of informa-
tion in Table 8. Our objective is to detect non-compliance and send
the documents for review by experts, so we need to maximize the
number of absent mandatory information we can detect.

Table 8: Results of mandatory information detection from
both OPP-115 and post-GDPR privacy policies.

Dataset P R F1

OPP-115: absence 93 88 90
OPP-115: presence 93 97 95
Post-GDPR: absence 78 78 78
Post-GDPR: presence 91 91 91

Most of the errors on the OPP-115 dataset (see Figure 8) are
caused by the difficulty of aligning OPP-115 concepts with GDPR
concepts. For example, to encode "Data retention period" we used
the "Retention period" attribute. However, even when the anno-
tators select a value for the "Retention period" in [48] it does not
always concern all the collected personal data. In contrast, the
GDPR requires that the retention period is stated for all of the data.

The majority of errors on the post-GDPR policies are when the
algorithm does not detect the right to data portability. This type
of error is expected: because data portability has not been widely
adopted before the GDPR (Art. 20), and no privacy policy from the
OPP-115 dataset mentions the right to data portability.

Although our rules did not capture the right to data portability,
T5 correctly predicted the category "data portability" from this sen-
tence: "Data portability, that is to say the possibility of receiving
these data in a structured format that is readable by an automatic de-
vice and of sending them to another processing owner without any
impediments." T5 could predict new categories of data practices due
to its language understanding capabilities that enable few and zero-
shot inference [22, 50, 53]. Other new categories from the GDPR
articles, predicted for post-GDPR policies are: "data minimisation"
(Art. 5.1(c)), "data accuracy" (Art. 5.1(d)), "legitimate interests" (Art.
6.1(f)), "lawful basis" (Art. 6), and "right to object" (Art. 21).
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Categories of personal data
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Figure 8: The distribution of errors over types of mandatory
information for OPP-115 and post-GDPR privacy policies

6 CONCLUSION
This study designed a theoretical framework to implement and
monitor GDPR compliance in the data supply chain through a
document-based approach, for which we defined three key tasks.
We proposed a formal and substantive approach to verify GDPR-
compliance of privacy policies. It is worth highlighting that, as
a potential next step, our framework could be adapted to other
compliance documents like DPIAs and/or ROPAs. More broadly,
research is also needed to implement this framework in a multi-
document setting, where data processing activities are described in
multiple documents.

Our second significant contribution is the experimentation on
the automation of formal compliance checking of privacy policies,
which could be generalized to other documents in the data supply
chain as a means to improve end-to-end compliance. We build a
system combiningmachine learning and rules to detect the presence
of information required by the GDPR. We fine-tuned the T5 model
in a multi-task setting and achieved good performance predicting
both coarse-grained and fine-grained data practices with only one
model. The T5 model also extracts the spans of text corresponding
to the fine-grained data practices. These spans of text could be used
to explain the predicted values.

We used the OPP-115 taxonomy to encode 10 GDPR rules from
Articles 13 and 14 concerning the information a privacy policy
should contain. We evaluated the system on a corpus of 30 privacy
policies, where legal experts indicated the presence of mandatory
information. Although OPP-115 taxonomy is pre-GDPR, it proved
capable of capturing some mandatory information in both pre-
GDPR and post-GDPR policies. Currently, it is one of the most
valuable resources in our research community. Still, it is not enough
to encode both GDPR rules and data protection activities defined in
compliance documents. Thus, there is a need for a new corpus of
data protection documents from the data supply chain, to automate
compliance checking tasks, which we leave for the future work.

Additionally, we pointed that T5 was able to predict new cate-
gories such as data portability. This capacity of zero-shot prediction
can be leveraged to assist law and privacy scholars in creating a
GDPR taxonomy compatible with the variety of compliance docu-
ments in the data supply chain.
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