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Abstract—Due to the increasing importance and volume of
highly interconnected data, such as in social or information
networks, a plethora of graph mining techniques have been
designed to enable the analysis of such data. In this work,
we focus on the mining of associations between entity features
in networks. We model each entity feature as a dimension
to be analyzed. Consequently we build our approach on top
of the existing graph cube framework which is an extension
of the concept of the data cube to networks. Our task is
particularly challenging because it requires the analysis of both
the initial multidimensional network and all its subsequent
aggregate forms. As soon as we deal with a big data situation
it is impossible for an analyst to consider manually all the
possible views of the network data. The aim of this work
is to design an algorithm for the discovery of interesting
patterns in large graph cubes. Thus, instead of examining all
the possible aggregations manually, the proposed technique
leads the analyst to the interesting associations or patterns
in the multidimensional network. Furthermore, we study the
application of existing algorithms from the frequent itemset
mining literature on graph data and propose a mapping
between the two settings.

Keywords-Graph Mining, Graph Cubes, Frequent Itemset
Mining

I. INTRODUCTION

Due to the increasing availability of network data, var-
ious algorithms are being developed by the data mining
community for the automated analysis of graphs. Moreover
richer network information has become accessible, creating
the need for graph mining techniques that consider both the
network structure and the entities’ features. In this work
we search for interesting patterns in large graphs. Among
the different kinds of interesting patterns we may find, we
focus on surprising patterns. For example let us say that we
observe a high number of relationships between American
and Chinese people. This is a pattern we may find in a social
network. However, since a large number of people live in
the USA and China, it is not surprising that the number
of relationships between people of these two countries is
significant. On the other hand, observing the same high
number of connections between Belgian and Chinese people
is more surprising. In this work we are looking for such
surprising patterns over the characteristics of edges. To
measure how surprising a pattern is, we define a null model
that we assume has generated the data at hand.

We model the graph of interest by a multidimensional
network where nodes have attributes while edges have not.
The graph cube framework proposed by Zhao et al. [1]
is an extension of the data cube to graph data. From a
multidimensional network this framework defines the differ-
ent network aggregations, which are views of the original
network without one or multiple attributes. In such an
aggregate network nodes are merged in a way similar to a
GROUP BY in a relational database and the weights of the
edges are updated. Example 1 presents a multidimensional
network and an aggregate network built from it.

Example 1: Figure 1a presents our toy network that con-
tains 10 nodes and 13 edges. Each node represents a person
whose gender, location and profession are known. The
location attribute can take three different values: Belgium
(BE), The Netherlands (NL) or Germany (DE). Then the
profession value is one of the following: Lawyer, Engineer
or Teacher.

In this network multiple patterns along one or multiple
attributes can be found. For instance we can consider [(Engi-
neer), (Teacher)] or [(Lawyer, Lawyer)] that are two patterns
defined over the Profession attribute only. But we can also
be more specific by considering a pattern defined over the
Location and Profession attributes, e.g. [(Belgium, Teacher),
(Germany, Engineer)]. The two aggregations considered here
are (Profession) and (Location, Profession) respectively.
Figure 1b presents the aggregate network (Profession) where
the location and the gender of the people are ignored. Sec-
tion III introduces formally the graph cube and its aggregate
networks.

A graph cube represents all the possible aggregations of
the initial multidimensional network. Graph cube mining is
then no longer limited to the initial graph, but also explores
all possible aggregations of the graph. Interesting patterns
could be discovered inside each aggregate network. Each ag-
gregation is built by considering or omitting every dimension
of the original network. As a consequence the graph cube
contains an exponential number of aggregate networks. In a
big data setting, that is where the number of dimensions or
the network itself is large, an analyst is overwhelmed by the
number of patterns. Hence we propose an algorithm to help
the analyst locate the interesting combinations of dimensions
as well as the interesting patterns in these views.



(a) The toy network

(b) The aggregate network (∗, ∗, Profession) built from the toy
network

The algorithms proposed in the state of the art allow the
discovery of interesting patterns in a single graph mainly
by analyzing its structure. In this work we consider both the
structure of the graph and the internal information present in
each node. We employ a statistical technique inspired from
the frequent itemset mining literature to locate interesting
patterns in large graph cubes. Thus, instead of examining
the large cubes space manually, the proposed technique
leads the analyst to the surprising patterns of the large
multidimensional network.

Existing algorithms that discover interesting itemsets in-
clude MINI [2] and MTV [3]. MINI searches for surprising
itemsets while MTV searches for representative itemsets.
As MINI, our approach searches for surprising associations.
Therefore we propose a mapping between pattern mining
in multidimensional networks and frequent itemset mining,
that we use to compare our approach with MINI. At the end
of the day we consider two approaches: the original graph
mining problem transformed so that MINI can be applied
and the new graph approach that we propose.

The contribution of this paper could be summarized as
follows:

• We propose a mapping between pattern mining in
attributed graphs and frequent itemset mining in trans-
actional databases.

• We formally define a measure of interestingness of
patterns in a graph cube framework, and we provide
an algorithm to search for the surprising patterns.

• We compare our method with an algorithm from the
frequent itemset mining literature: MINI [2], and con-
duct experiments on two different datasets.

The remainder of this paper is organized as follows.
Section II discusses the state of the art and presents the
frequent itemset mining problem and existing algorithms to

mine them. In Section III, we present the graph cube model
and we propose the mapping from an attributed graph to
a transactional database. Then we formally define a pattern
within the graph cube data model in Section IV, and propose
a corresponding measure of interestingness in Section V.
Section VI presents the experiments we conducted on two
different MovieLens datasets and how we built attributed
graphs from these datasets. Finally we conclude this paper
and discuss future work.

II. RELATED WORK

At present existing algorithms discover surprising patterns
in a graph mainly by analyzing its structure. For instance
Akoglu et al. search for abnormal clusters of nodes in
weighted graphs [4] by considering structural properties such
as their densities. Other techniques, based on the minimum
description length principle, include surprising substructures
mining using Subdue [5] or anomaly mining by modeling
a normative pattern [6]. Chakrabarti proposes Autopart [7]
to detect outlier nodes by first reordering the adjacency
matrix of a graph so that similar nodes are grouped together.
However, considering the features of the nodes brings more
information and allows a refined analysis. Furthermore, most
approaches in the literature of attributed graph mining search
for outlier nodes and not surprising features associations [8].
For instance Gao et al. present CODA [9], an algorithm
to mine community outlier nodes by considering both node
information and the network topology.

In the remainder of this section we briefly present the
frequent itemset mining setting and the MINI algorithm that
searches for surprising itemsets. As we shall see, sets of
attributes in a network can be seen as itemsets. Then we
present another approach and the MTV algorithm that are
based on the maximum entropy principle. This approach
searches for itemsets that best describe the data and therefore
is opposed to the hypothesis testing framework that we
propose. To end this section, we discuss an approach whose
goal is highly similar to ours. It was recently proposed to
find the most interesting aggregate networks in a graph cube.

Frequent itemset mining: The mining model, widely
used in the frequent itemset literature, was first introduced
by Agrawal et al. [10]. Given a set of transactions, each
containing a set of items, the task of a frequent itemset miner
is to discover items that occur together in many transactions,
and to build association rules. The number of transactions
in which an itemset I is present is called the support of I .
Since the number of subsets is exponential with its size,
a prohibitively large number of frequent itemsets could
be found. Therefore, an interesting phenomenon, called
the pattern explosion, arises with frequent itemset mining.
Efficient algorithms were designed to mine frequent itemsets
on large data. Agrawal and Srikant presented the Apriori
algorithm [11] to perform such a task. Moreover, several
condensed representations of the frequent itemsets have been



proposed among which the maximal and the closed [12]
itemsets. Algorithms using constraint programming have
been proposed to mine efficiently closed [13] and maxi-
mal [14] frequent itemsets.

Surprising itemsets: However, an itemset that is fre-
quent is not necessarily interesting. Gallo et al. presented
MINI [2], an algorithm reporting the Most Informative and
Non-redundant Itemsets. The idea behind MINI is to select
itemsets that are hard to be explained by chance under prior
knowledge on the data. Itemsets are qualified as informative
if they are surprising with respect to some prior knowledge
on the data. Moreover MINI ensures that overlapping item-
sets are not both highly ranked as informative as they convey
part of the same information.

Maximum entropy models and subjective interesting-
ness: De Bie [15] presented a generic framework to repre-
sent prior information using the maximum entropy princi-
ple [16] by a probability distribution called MaxEnt. The
entropy in the sense of Shannon [17] is a measure of
uncertainty about a state. It can also be interpreted as the
average quantity of information in this state or the number
of bits needed to encode such information. Once the prior
information has been used to build a probability distribution
on the data, it is possible to evaluate the interestingness of
a pattern.

The MaxEnt model can be used to quantify the in-
terestingness of a pattern, for instance by considering its
probability under MaxEnt. The negative log-probability is
known as the self-information [18] in Shannon’s information
theory, the larger the more informative.

Succinctly summarizing data with itemsets: Mampaey
et al. presented the MTV algorithm [3] to summarize data
with itemsets. Their work is based on the generic framework
of De Bie [15] to model the prior information using the
maximum entropy principle. To assess the quality of a distri-
bution model, Mampaey et al. proposed to use the Bayesian
Information Criterion (BIC) [19] that favors models with
fewer parameters. Given a set of itemsets, one can compute
the maximum entropy model and its BIC score. The goal is
to find the set that best summarizes the data, i.e. with the
smallest score. This approach is not relevant to the goal of
our graph miner because MTV is looking for representative
itemsets while we are searching for surprising patterns.
However, having a set of representative patterns induces that
patterns present in this set should not be surprising.

Interesting features associations: Bleco and Ko-
tidis [20] proposed an entropy-based filter to locate inter-
esting node features associations in a graph. The aim is to
locate automatically the relationships of interest among the
exponential number of combinations. Their work is based on
the graph cube proposed by Zhao et al. [1]. Each aggregate
network built from any combination of attributes is assigned
an entropy value depicting the distribution of its nodes.
However, the intuition behind this choice is not clearly

stated. Then the authors use an entropy-based measure to
navigate within the cube lattice. This measure is used to
define whether an aggregation level must be extended.

III. PRELIMINARIES

A. Graph Cubes

First, we introduce formally the concept of multidimen-
sional network, a graph with attributes on the nodes. This is
the data structure on which the graph cube is based. Then in
Section IV we formally define the patterns we are looking
for in such a network.

Definition 1: A multidimensional network N is a graph
denoted as N = (V,E,A), where V is a set of vertices,
E ⊆ V × V is a set of edges and A = {A1, A2, . . . , An} is
a set of n vertex-specific attributes, i.e. ∀u ∈ V , there is a
multidimensional tuple A(u) = (A1(u), A2(u), . . . , An(u)),
where Ai(u) is the value of the i-th attribute of the vertex u,
with 1 ≤ i ≤ n. |A| is called the dimension of the network
N we consider.

The toy network was presented as an example in Section I
in Figure 1a. An aggregate network or cuboid built from it
represents a view from such a network where one or multiple
attributes are ignored. This view contains the information
about a specific combination of attributes. We first introduce
the notions of equivalence between nodes and edges used to
define how to merge them to form cuboids. Then we give
the formal definition of an aggregate network as introduced
by Zhao et al. [1].

Definition 2: Let N = (V,E,A) be a multidimensional
network and A′ = (A′1, A

′
2, . . . , A

′
n) a possible aggregation

of A, where A′i = Ai or ∗. If A′i = ∗ then the i-th dimension
is ignored in the process. Let u, v ∈ V be two nodes of the
network that are candidates to be equivalent. We say that u
and v are equivalent according to A′ if

∀i such that A′i 6= ∗ : A′i(u) = A′i(v).

Furthermore, we denote by eqA′(u, v) the function yielding
a true value if u and v are equivalent according to A′, or a
false value otherwise.

As an example let us consider the aggregation A′ =
(∗, ∗,Profession) and the toy network with numbered nodes
and edges in Figure 3. Then the nodes 2, 5 and 10 are
equivalent because they denote the three lawyers of the
network.

Definition 3: Let N = (V,E,A) be a multidimensional
network and A′ = (A′1, A

′
2, . . . , A

′
n) a possible aggregation

of A. Let e, f ∈ E be two edges of the network such that e =
(ue, ve), f = (uf , vf ). We say that e and f are equivalent
according to A′ if their end nodes are equivalent, i.e.

eqA′(ue, uf ) ∧ eqA′(ve, vf ) ∨ eqA′(ue, vf ) ∧ eqA′(uf , ve)

Similarly we denote by eqA′(e, f) the function yielding a
true value if e and f are equivalent according to A′, or a
false value otherwise.



Considering A′ = (∗, ∗,Profession) in our toy example,
e2 and e5 are two equivalent edges with respect to A′ as
they both associate an engineer and a lawyer.

Definition 4: Let N = (V,E,A) be a multidimensional
network and A′ = (A′1, A

′
2, . . . , A

′
n) a possible aggregation

of A, where A′i = Ai or ∗. Then the aggregate network
with respect to A′ is a weighted network N ′ = (V ′, E′),
where

1) To every equivalence set of nodes Veq of V , a node
in the aggregate network v′ ∈ V ′ is associated. The
weight of v′ is the number of equivalent nodes in Veq ,
i.e. w(v′) = |Veq|. Therefore v′ is called a condensed
vertex.

2) To every equivalence set of edges Eeq of E, an edge
in the aggregate network e′ ∈ E′ is associated. The
weight of e′ is the number of equivalent edges in Eeq ,
i.e. w(e′) = |Eeq|. Therefore e′ is called a condensed
edge.

From a multidimensional network multiple aggregations
can be defined to obtain as many aggregate networks. One
could wonder how these different networks are linked to
each other. We introduce here the definition of a graph cube,
based on [1].

Definition 5: Given a multidimensional network N =
(V,E,A), the graph cube is obtained by restructuring N in
all possible aggregations of A. One corresponding aggregate
network N ′ is associated to each aggregation A′ of A. An
aggregation of a multidimensional network N = (V,E,A)
is called a cuboid.

In the remainder of this paper we use the terms cuboid,
graph and network to denote the multidimensional network
defined by an aggregation. Figure 2 illustrates the concept of
a graph cube lattice, that contains all the possible aggregate
networks or cuboids. The numbers denote the number of
nodes and edges in the networks. We say that a cuboid
S′ is an ancestor of another cuboid S if S is defined
over all the attributes of S′ and one or multiple other
attributes. For example, (∗, ∗,Profession) is an ancestor
of (∗,Location,Profession). The most aggregated network
represented at the top of the lattice is called the apex. It is
the ancestor of all the cuboids. Furthermore, we call S′ a
direct ancestor of S if S is defined over all the attributes of
S′ and exactly one other attribute.

B. Mapping Pattern Mining in Graphs to Itemset Mining

In this work, we propose an approach that maps the
problem of finding interesting aggregate edges in the graph
cube to the problem of finding interesting itemsets in a
transactional database. The idea is that each edge in the
original graph can be mapped to a transaction and a pair
of attribute values can be mapped to an item. Hence a
transaction consisting of a set of items is equivalent to a
set of pairs of attribute values defining an edge.

Figure 2: Graph cube lattice

Figure 3: The toy network with numbered nodes and edges

Let N = (V,E,A) be a multidimensional network. Any
edge e ∈ E can be translated into a transaction X1, . . . , Xn

with n = |A| is the number of attributes in N . Indeed
an undirected edge e is fully described by the attributes of
the two nodes associated to e. Definition 6 formalizes the
proposed mapping.

Definition 6: Let N = (V,E,A) be a multidimensional
network and u, v ∈ V, e ∈ E : e = (u, v). Let A be the set
of all possible node attribute tuples. Let T be the set of all
possible transactions. The mapping M : A2 7→ T 2 takes a
pair of tuples representing an edge as input and returns the
corresponding pair of transactions as output. Thus the two
transactions corresponding to e are given by

M(A(u), A(v)) = ({X1, . . . , X|A|}, {Y1, . . . , Y|A|})

with Xi = (Ai(u), Ai(v)), Yi = (Ai(v), Ai(u)) ∀i
Since we deal with undirected graphs, the mapping we

defined above yields a transactional database that is more
consistent with the original network because it maps two
transactions to a single edge. Figure 3 and Table I present
respectively our toy network and the mapping between the
edges and their corresponding pairs of transactions.

IV. FREQUENT PATTERN MINING

This section defines the kind of patterns we are looking for
in the data as well as some measures related to these patterns.
We consider that a pattern is an edge of any network in the
graph cube lattice as stated in Definition 7 and illustrated



Edge Tuples Transactions Edge Tuples Transactions
e1 (F, NL, T), (M, BE, E) {FM, NLBE, TE}, {MF, BENL, ET} e8 (F, DE, T), (M, NL, E) {FM, DENL, TE}, {MF, NLDE, ET}
e2 (M, BE, E), (M, NL, L) {MM, BENL, EL}, {MM, NLBE, LE} e9 (M, NL, E), (F, BE, T) {MF, NLBE, ET}, {FM, BENL, TE}
e3 (M, NL, L), (F, BE, T) {MF, NLBE, LT}, {FM, BENL, TL} e10 (F, BE, T), (F, NL, T) {FF, BENL, TT}, {FF, NLBE, TT}
e4 (F, BE, T), (M, DE, E) {FM, BEDE, TE}, {MF, DEBE, ET} e11 (M, NL, L), (F, BE, T) {MF, NLBE, LT}, {FM, BENL, TL}
e5 (M, DE, E), (M, DE, L) {MM, DEDE, EL}, {MM, DEDE, LE} e12 (F, BE, T), (M, NL, E) {FM, BENL, TE}, {MF, NLBE, ET}
e6 (M, DE, L), (F, DE, L) {MF, DEDE, LL}, {FM, DEDE, LL} e13 (M, DE, E), (F, DE, T) {MF, DEDE, ET}, {FM, DEDE, TE}
e7 (F, DE, L), (F, DE, T) {FF, DEDE, LT}, {FF, DEDE, TL}

Table I: Mapping from the toy network to its corresponding transactional database

(a) Aggregate network
(Gender, ∗, Profession)

(b) Aggregate network
(Gender, ∗, ∗)

Figure 4: The (Gender, ∗, ∗) and (Gender, ∗, Profession)
aggregate networks built from the toy network

in Example 2. In Section V we define the interestingness
of a pattern P to be related to the probability to observe it
as many times as it appears in the data. This probability
is computed given the prior knowledge contained in the
ancestors of the network where the pattern lies. The higher
the interestingness of a pattern, the more surprising it is to
observe it given the prior knowledge.

The prior knowledge we will use consists of the direct
ancestors of the cuboid where the pattern lies. Consequently
we define S to be an arbitrary selection of attributes such that
S ⊆ A contains at least an element. In fact we can define
S as being any cuboid in the graph cube lattice except the
apex, the most aggregated network containing a single node
and a potential self-loop.

Definition 7: In a networkN = (V,E,A), a pattern P is
defined by a selection of attributes S ⊆ A and two tuples of
values T1 and T2 defined over the attributes in S. The pattern
P is then an edge (u, v) such that S(u) = T1, S(v) = T2
with u, v ∈ V .

Example 2: Considering our toy network, we can define
as many patterns as the total number of edges in all the
networks of the graph cube lattice but the apex. Figure 4a
highlights the pattern [T1, T2] = [(Male, Lawyer), (Female,
Teacher)] denoted by P which is present two times in the
data. P is defined upon the cuboid, or subset of attributes,
S1 = (Gender, ∗,Profession). It corresponds to the two
edges e3 and e11 in the original network in Figure 3.

Similarly to frequent itemset mining, we denote the num-
ber of occurrences of P as its support and formalize it as
follows.

Definition 8: Let N = (V,E,A) be a multidimensional

network, P = (T1, T2) be a pattern defined over an aggrega-
tion S ⊆ A, and eP = (u, v) be an edge such that S(u) = T1
and S(v) = T2. Then the support suppS(T1, T2) of P is
equal to ∑

e∈E : eqS(e,eP )

1

Please note that the support of a pattern in a cuboid is
the weight of the pattern in such a network. For example,
in Figure 4a the support of the pattern [(Female, Lawyer),
(Female, Teacher)] is 1 and in Figure 4b the support of
[(Male), (Female)] is 9. Both figures denote aggregate net-
works built from the toy example. In Section V we define
the interestingness of a pattern based on its support.

V. SURPRISING PATTERNS DISCOVERY

To quantify how surprising a pattern is, we use an
hypothesis testing framework. For a particular pattern P we
compute the probability to observe supp(P ) occurrences of
it, given some prior knowledge we have on the data. This
knowledge is based on the ancestors of the network where P
lies. In this section we model the prior information and then
compute the conditional probability of observing supp(P )
occurrences of P .

A. Pattern probability
First, we define the probability of a node having certain

attributes defined by a tuple T with respect to a more
aggregated view of the network and denote it by p. The
probability pS,S′(T ) of a node having attribute values T over
S is the fraction of nodes having attribute values T among
the nodes having attribute values T ′ where T ′ is defined
over S′ ⊂ S. Therefore p is the probability Pr(T | T ′).

Definition 9: The proportion pS,S′(T ) of a tuple of
values T defined over a set of attributes S with respect to a
set of attributes S′ ⊂ S is given by

pS,S′(T ) =
suppS′(T )

suppS(T )

Example 3: Let us consider again our toy network. Fig-
ure 4a and Figure 4b present the networks associated
with the cuboids S = (Gender, ∗,Profession) and S′ =
(Gender, ∗, ∗) respectively. Then the proportion of the tuple
(Male, Lawyer) with respect to S′ is given by

pS,S′ [(M, Law)] =
WV [(M,Law)]

WV ′ [(M)]
=

2

5



where WV and WV ′ are the functions mapping a tuple of
attributes to its weight in the networks corresponding to the
cuboids S and S′ respectively.

A possible definition for the probability of a pattern is
inspired by the partition models [21] and adapted to the
graph cube lattice we are working with. The idea in the
itemset mining setting is to assume that all the elements of
a partition of the items occur independently from each other.
Here we consider an independence model, i.e. a particular
case of a partition model.

In our setting, let P ′ = (T ′1, T
′
2) be the pattern P restricted

to S′, i.e. P from which we remove the values of the
attributes S \ S′. The idea is to compute the probability of
observing P given that we observe P ′ a certain number of
times. We calculate this probability under the null hypothesis
that the data is generated from an independence model.
In this model we assume that each node has the same
probability to be seen. As a consequence, the probability of
observing an edge P = (T1, T2) is equal to the product of
the proportions of its two end points T1 and T2 with respect
to S′. If we take an edge at random in G, the probability of
the end points attribute values to match the pattern P given
that we know the support of P ′ is given by Equation 1.

Pr(P | N ′) = pS,S′(T1)pS,S′(T2) (1)

This is the probability that one of the supp(P ′) edges
is an edge between T1 and T2. P has a single equivalent
edge in N ′. This is the edge whose nodes have the same
properties as the nodes of P except the aggregated one(s).
Several edges in G can have the same ancestor edge in N ′.
Therefore we can define the probability to draw an edge P
from its corresponding ancestor edge which has a support
greater or equal to the support of P .

Example 4: We want to compute the probability that
an edge lies between a woman in Belgium and a man
in the Netherlands, given that the edge lies between a
man and a woman. Let us consider the aggregate edge
P ′ = [(Male), (Female)], which has a weight of 9 and is
highlighted in Figure 4b and Figure 5b. It is distributed
into 5 aggregate edges in the cuboid (Gender, Location, ∗).
Each of these aggregate edges has its own probability to
be drawn from the 9 original edges aggregated into one in
the cuboid (Gender, ∗, ∗). The probability that the aggregate
edge P1 = [(Female, BE), (Male, NL)) is drawn from the 9
edges is given by 2

5 ×
2
5 = 0.16.

Please note that supp(P1) = 4 and that P1 is as likely
to be drawn as P2 = ((Female, BE), (Male, DE)) while
supp(P2) = 1.

However, this quantity is not always correct. Let us con-
sider the (Gender, ∗, ∗) network in Figure 4b that contains
a total of 10 nodes and 13 edges. Its only ancestor is the
apex that contains a self-loop. Considering that we draw an
edge from one of the 13 edges aggregated in the self-loop,

(a) Aggregate network
(∗, Location, ∗)

(b) Aggregate network
(Gender, Location, ∗)

Figure 5: The networks corresponding to the cuboids (∗,
Location, ∗) and (Gender, Location, ∗) built from the toy

network

the probability to get the edge [(Male), (Female)] is equal to
the product of the proportions of (Male) and (Female), that
is 0.25. The two other edges of this network have the same
probability to be drawn, leading to a sum of probabilities
equal to 0.75. The missing fourth comes from the [(Male),
(Female)] edge. Indeed as we draw an edge by drawing its
two end points successively we should add the probability
to draw a (Female) node after a (Male) node. Our drawing
process induces an order between the nodes and therefore a
direction to the edges.

Generally speaking, this situation occurs when drawing
a non self-loop edge (T1, T2) whose equivalent edge in an
ancestor cuboid is a self-loop. Hence we choose to define the
probability of observing an undirected edge (T1, T2) as the
sum of the probability to draw T1 then T2 and the probability
to draw T2 then T1. This means that in the toy example we
mentioned above we should add the probability to draw a
man then a woman and the probability to draw a woman then
a man when drawing from the unique self-loop edge of the
apex. Hence the probability to draw an edge between a man
and a woman is equal to 0.5. This solution induces a bias
towards non self-loops being more likely than self-loops.

B. Pattern interest

The interest of a pattern can be defined in various ways.
In this work, we say that a pattern is interesting if it is
surprising with respect to some prior knowledge. We derive
the probability that a pattern P has indeed a support equal to
the observed support supp(P ), given that P is drawn from
the aggregate edge, in the ancestor N ′, equivalent to P . We
model the support of P as a random variable following a
binomial distribution. The Bernoulli trial is the following: an
edge is drawn from the aggregate edge in N ′ equivalent to
P with probability p = Pr(P | N ′) as given in Equation 1.

Equation 2 defines the probability to observe supp(P )
occurrences of P in a networkN defined over S with respect
to an ancestor cuboid S′ ⊂ S.



Pr(supp(P )) =

(
supp(P ′)

supp(P )

)
psupp(P )(1−p)supp(P

′)−supp(P )

(2)
The components of this equation are the following.
• The binomial coefficient is the number of possibilities

to draw the actual number of edges from the number
of aggregate edges in the ancestor.

• p is the probability to draw P from P ′.
• 1− p is the probability to draw another edge from P ′.
Example 5: Let us consider the pattern

P = [(Female, BE), (Male, NL)) whose context is given
in Figure 5. The probability of P given the (Gender, ∗, ∗)
network given in Figure 4b was computed in Example 4
and is equal to p = 0.16. The probability to effectively
observe 4 such edges is equal to(

9

4

)
0.1640.845 = 0.03.

On the other hand, the probability to observe the 4 edges
of P according to the aggregation (∗, Location, ∗) whose
network is given in Figure 5a is equal to(

7

4

)
0.4440.563 = 0.23.

Given each ancestor S′ ⊆ S, we can compute a proba-
bility by Equation 2. To avoid considering the exponential
number of ancestors S′ ⊆ S, we restrict ourselves to the
direct ancestors of S, denoted by Sanc. For every S′ ∈
Sanc, we compute the probability p = Pr(supp(P ) | S′).
The ancestors and the independence model form the prior
knowledge on the data. If one of the ancestors yields a
high probability p, then this part of the prior knowledge
implies the actual support of P . On the other hand, if all
the ancestors yield a small probability p, then nothing in
the prior knowledge can explain why we observe supp(P ).
Hence we define the interestingness of a pattern to be equal
to the highest probability computed from its ancestors. We
define it as the quantity that best explains supp(P ) according
to the independence model and denote it by int(P ). The
lower the interestingness, the more surprising the pattern is.

int(P ) = max
S′∈Sanc

Pr(supp(P )) (3)

We calculated the probability of observing supp(P ) for
P = [(Female, BE), (Male, NL)) given each of its direct an-
cestor networks in Example 5. This pattern is best explained
by the (∗, Location, ∗) network with a probability of 0.23.
Hence the interestingness of P is equal to 0.23.

C. Search algorithm

Algorithm 1 performs an exhaustive search throughout
every aggregate network of the multidimensional network N
using a probability threshold θ. Any aggregate edge having

the probability of its support above this threshold is not
interesting.

Algorithm 1: Search for surprising patterns in the graph
cube lattice

Input : L the lattice containing all the aggregate
networks built from a given network

Input : θ the aggregate edge probability threshold
Output: The set of surprising aggregate edges in any

network of L with respect to θ
1 patterns← ∅
/* Most aggregated network is apex */

2 for N ← L \ apex do
3 (V,E,A)← N
4 for e ∈ E do
5 interesting = true
6 p = 0
7 ancestors =

{(V ′, E′, A′) | A′ ∈ A, |A′| = |A| − 1}
8 for N ′ ← ancestors do
9 p = max(p, probability(N ,N ′, e))

10 if p ≥ θ then
11 interesting = false
12 break
13 end
14 end
15 if interesting then
16 patterns← patterns ∪ (e, p)
17 end
18 end
19 end
20 return patterns sorted by probability

VI. EXPERIMENTS

We test our measure of interestingness in attributed graphs
on two different datasets. The first one is collected by the
GroupLens research lab at the University of Minnesota1 and
consists of a million of ratings given by MovieLens2 users
to movies. Demographic information on the users is also
provided. We use the dataset to build a network where the
nodes correspond to users and we create an edge between
two users if they have the same cinematographic tastes.

The second dataset is an enhancement of the 10 millions
ratings MovieLens dataset where information about the
movies from the Internet Movie Database3 (IMDb) and
Rotten Tomatoes4 (RT) has been added. Therefore we build
a network where a node represents a movie and there is

1GroupLens Research group, https://www.grouplens.org
2MovieLens, movie recommendations, https://www.movielens.org
3Internet Movie Database, http://www.imdb.com
4Rotten Tomatoes - movie critic reviews, https://www.rottentomatoes.

com
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Figure 6: Number of high ratings per movie in the
MovieLens1M dataset

an edge between two movies if they are liked by a certain
number of same users. We present in this section how
we construct these two networks and the experiments we
conducted on them.

A. Network construction

The MovieLens dataset: The MovieLens1M dataset en-
compasses some demographic information about the users,
namely their age, gender, occupation and location. The
dataset consists of a million of ratings given between 2000
and 2003, its characteristics are given in Table II. The rating
scale is an integer from 1 to 5 stars. We include users
that gave at least 20 ratings. From this dataset we build
a multidimensional network N1 = (V1, E1, A1). The set of
nodes V1 is directly the set of provided users. The attributes
of the nodes A1 are the user features provided in the dataset.
The age of a user belongs to one of the 7 age groups while
there are 21 possible occupations. The location is given as
a zip-code and we categorized it into U.S. states. The set of
edges E1 requires a similarity measure between users to be
built.

We choose to put an edge between two users if they like
a certain number of movies in common. We arbitrarily say
that a user likes a movie if they rate it 4 or above . We
define the similarity between two users to be the number of
movies they both rated 4 stars or more. However, one can
expect from a movie dataset that the function depicting the
number of high ratings per movie follows a power law, a
few blockbusters having a lot of high ratings while the rest
of the movies is highly less rated at all. Figure 6 presents
such a function. As expected the curve follows a power law
and we can observe the long tail of the distribution.

Since the blockbusters will favor a higher similarity be-
tween all the users we choose to remove them. The function
presented in Figure 6 shows an abrupt slope near the 500
users. Therefore we consider as blockbuster in this dataset
the movies having at least 500 ratings of 4 stars or more and
remove them. We refer to the obtained dataset as the pruned
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Figure 7: Number of pairs of users per similarity in the
pruned MovieLens1M dataset

Dataset Users Movies User features Ratings
MovieLens1M 6000 3700 (age, gender, occ., loc.) 1,000,000

Network Users Nodes Similarities Edges
N1 1393 975 32537 27150

Table II: Statistics about the MovieLens1M dataset and
network N1 built from it

MovieLens1M dataset. Then we need to define a threshold
from which the similarity measure yields an edge in the
network. For this purpose we show in Figure 7 the relation
between a similarity and the number of pairs of users having
this similarity. We removed similarities 1 to 5 as they have
a very high amount of pairs of users in order to observe the
curve in more details.

We observe that this relation also follows a power law, a
high number of pairs having a low similarity while a few
pairs have a high similarity. We also observe that the slope
becomes abrupt around a similarity of 20. Therefore in order
to reduce the number of edges in the newly created network
we set the similarity threshold to 20. The statistics about the
obtained network N1 are given in Table II.

The extended MovieLens dataset: The second Interna-
tional Workshop on Information Heterogeneity and Fusion in
Recommender Systems [22] (HetRec 2011) released several
datasets among which the extended MovieLens dataset. It
consists of the MovieLens10M dataset enhanced by more
information about the movies from IMDb and RT such as the
country of origin and the different user and critics ratings.
Statistics about this dataset are presented in Table III The
ratings were given from 1995 to 2009 on the MovieLens
website and range from 0.5 to 5 stars.

For this network N2 = (V2, E2, A2), we model the nodes
V2 to be the movies. Each movie has three attributes: its year
of release, its country of origin and the average top critic.
The original average RT top critic is given on a scale from
0 to 10 but we categorize it into 5 classes: very bad, bad,
average, good, very good. We also categorize the year of
release by replacing them by their respective decade. Finally



Dataset Users Movies Movie features Ratings
HetRec11 2100 10,200 (critic, country, decade) 860,000
Network Movies Nodes Similarities Edges
N2 678 318 25808 10985

Table III: Statistics about the extended MovieLens10M
dataset and network N2 built from it

Cuboid Pattern Probability
(Gender) [(M), (M)] 0
(Gender) [(M), (F)] 2.31× 10−292

(Age) [(35), (18)] 1.4× 10−71

(State) [(GU), (CA)] 3.88× 10−67

(Gender) [(F), (F)] 2.1× 10−65

(Age, State) [(50, PA), (25, CA)] 1.95× 10−47

(Age) [(18), (50)] 3.12× 10−47

(State) [(CA), (LA)] 1.75× 10−44

(Age) [(18), (56)] 1.09× 10−40

(Age) [(25), (25)] 9.42× 10−40

Table IV: Top 10 most interesting patterns in the
MovieLens1M dataset reported by our miner

we have A2 = (critic,country,decade). As for the
MovieLens1M dataset, we need a similarity measure to build
the set of edges E2.

Similarly to the approach described above, an edge is put
between two movies if they have a certain number of users
that gave them a rating of 4 stars or more in common. The
function depicting the number of movies rated 4 or more per
user also follows a power law. A few users took the time
to rate a high number of movies or like a lot of them while
most users express their preferences for a small number of
movies

Therefore a few users are easily similar to a lot of other
users by liking a high number of movies. We decide to
remove them by not taking into account users that gave a
high rating to more than 400 movies. Then the similarity
threshold is empirically defined in a similar manner as we
did for the MovieLens1M dataset. We set the similarity
threshold to 40. The statistics about the obtained network
N2 are given in Table III.

B. Results

In this section we present the patterns output by our miner
on the two MovieLens datasets. We interpret the results of
our miner on both datasets and we show the limitations of
the MINI algorithm.

Regarding the MovieLens1M dataset where nodes are
users, the 10 most interesting edges according to the prob-
ability measure are given in Table IV. We can observe that
the three aggregate edges of the gender cuboid are output.
It seems to be the case that attributes having a small set of
values are more likely to be surprising.

As for the extended MovieLens10M dataset where nodes
are movies, the 10 most interesting edges are presented in
Table V. We can observe that 4 of the edges are between

Cuboid Pattern Probability
(Critic) [(Good), (Very good)] 3.67× 10−194

(Critic) [(Good), (Very bad)] 4.19× 10−134

(Critic) [(Very good), (Very good)] 4.19× 10−130

(Country) [(USA), (USA)] 5.32× 10−117

(Critic) [(Average), (Very bad)] 9.52× 10−106

(Critic) [(Very bad), (Very bad)] 1.04× 10−82

(Country, Critic) [(USA, Good), (USA, Good)] 3.13× 10−72

(Critic) [(Good), (Good)] 1.16× 10−64

(Country) [(USA), (Spain)] 8.91× 10−61

(Country) [(Ireland), (USA)] 7.62× 10−59

Table V: Top 10 most interesting patterns in the extended
MovieLens10M dataset reported by our miner

top critic values. It seems to confirm the fact that attributes
with a small set of values are more likely to be output as
surprising. A possible interpretation of these results is the
following. As the second most interesting edge lies between
very bad and good movies according to the average top critic
ratings, we can infer that people rating the movies in this
dataset do not agree with the top critics.

We also ran the MINI algorithm on the two datasets.
Results are given in Table VI and Table VII. As the
algorithm uses a greedy heuristic to add the itemsets to the
set of interesting patterns, we set the maximum number of
iterations to 10, 000. On both datasets the results are not
really interesting, MINI reports the relations that often occur
and that have a relatively high p-value. Moreover MINI did
not return 10 patterns. Better results can be obtained by
increasing the maximum number of iterations. But we report
here only these results to illustrate the fact that MINI is
greedy and hence can be fooled by unsurprising but frequent
patterns.

Cuboid Pattern p-value
(Age) [(25), (25)] 0.74

(Gender) [(M), (F)] 0.74
(Gender) [(F), (M)] 0.74
(Gender) [(M), (M)] 0.74

Table VI: Top 10 most interesting patterns in the
Movielens1M dataset reported by MINI

Cuboid Pattern p-value
(Country, Critic) [(USA, Good), (USA, Good)] 8.85× 10−11

(Critic) [(Good), (Very good)] 0.74
(Critic) [(Very good), (Good)] 0.74

(Decade) [(2000), (2000)] 0.74
(Decade) [(2000), (1990)] 0.74
(Decade) [(1990), (1990)] 0.74

Table VII: Top 10 most interesting patterns in the extended
Movielens10M dataset reported by MINI

VII. CONCLUSION

Our objective was to study the patterns that can be found
in attributed graphs. We based our work on the graph cube



data model and proposed a hypothesis testing framework to
evaluate how surprising the found patterns are with respect
to an independence model. We showed the relationship
between our pattern mining framework and the frequent
itemset mining literature. Moreover we proposed a map-
ping from attributed graphs to transactional databases. We
compared the frequent itemset mining algorithm MINI on
transactional databases with our method on attributed graphs
theoretically. Furthermore, we gave the interpretability of the
results obtained on two MovieLens datasets with MINI and
with our method.

Many opportunities for extending this work exist. Exper-
iments on synthetic datasets and other real datasets can be
conducted to understand in more depth the patterns that
can be found in the graph cube lattice. The maximum
entropy model on binary databases could be adapted to
attributed graph data to provide a generic framework for
mining patterns in networks. The notion of pattern can be ex-
tended to heterogeneous features associations. For instance a
pattern could consist of the number of relationships between
Belgians and engineers.
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