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ABSTRACT

In this paper, we propose a multi-modal framework to tackle
the SPARK Challenge by classifying satellites using RGB
and depth images. Our framework is mainly based on Auto-
Encoders (AE)s to embed the two modalities in a common
latent space in order to exploit redundant and complementary
information between the two types of data.

Index Terms— Auto-encoders, Multi-modal, RESNET,
Space Target Recognition

1. INTRODUCTION

Multi-modal images are quite common in visual systems and
are often complementary as their are taken from different
kinds of sensors or generated by different processing tech-
niques. Thus, they are useful for various computer vision
applications such as surveillance [1, 2], medical applications
[3], and agriculture [4] but also for Space Situational Aware-
ness (SSA) like in our case. The proposed SPARK challenge
[5] provides a new unique space multi-modal annotated image
dataset with a total of nearly 150k RGB images and the same
number (i.e 150k) of depth images of 11 object classes (i.e 10
spacecraft and 1 class for space debris) [6]. This challenge
offers the opportunity to work with multi-modal images gen-
erated under a realistic space simulation environment, with a
large diversity in sensing conditions” making the space target
recognition task very challenging.

The research field of Learning common (latent) represen-
tations of multi-modal is referred to in the literature as multi-
modal representation learning. This goal is mainly achieved
by either aligning or fusing modality-specific latent features.
Another approach, called multi-modal embedding (MME), is
the projection of these modalities in a common latent space.
The resulting feature vectors can then be used to solve several
ML tasks. Typical techniques include non-negative matrix
factorization (NMF)-based methods [7] or kernel-based meth-
ods such as Deep Canonical Correlation Analysis (DCCA)
[8]. However, they suffer from several limitations, mainly in-
efficiency to scale with large scale databases, complexity and
wastefulness to compensate for missing modalities due to reg-
ularization and added constraints [9] which makes them less

attractive. Recently, generative models such as GANs [10] or
VAEs [11] have gained popularity in this field [9, 12] thanks
to their effectiveness in narrowing the difference between the
different modalities’ distributions [13] and their ability to map
any given distribution to a target one.

In a previous work [14], we have suggested an MME ar-
chitecture, based on a mixture of AEs and GANs, which takes
as input multi-modal images and embed them in a common la-
tent space while imputing the missing modality if any. For the
SPARK challenge, we propose an AE-based architecture only
to extract the visual features from the RGB and depth images
as no missing modalities exist. The modalities are embed-
ded in a common latent space and trained in an unsupervised
way. Then, we tried a panoply of classifiers that take as input
the common features in order to recognize the satellites and
distinguish between them and space debris.

2. PROPOSED METHODOLOGY

This section describes the MME model architecture, inspired
by our previous work in [14] and how this model is used to
generate the embeddings that are further exploited by the clas-
sification stage.

2.1. Notations

For the sake of generalization, we start by formalising the
multi-modal input data which is usually represented by: X ={
X(1),X(2), · · · ,X(V )

}
where X(v) =

{
x
(v)
1 ,x

(v)
2 , · · · ,x(v)

N

}
∈ RN×dv∀v ∈ [1, V ]. V is the number of modalities, N is
the number of samples, and dv is the feature dimension of
v-th modality. d is the feature dimension of the common
latent space.
In the SPARK challenge, we will work with two modalities
so V = 2, X(1) represents the RGB modality and X(2) cor-
responds to the depth modality. For the rest of the paper, we
will denote them XRGB and XDEPTH respectively.
We denote by Y the labels space and each sample of the
dataset (couple of RGB and depth images) is associated to
yn ∈ Y ∀n ∈ [1, N ].



2.2. Architecture

The overall architecture consists of two components; the first
is for learning a representative feature vector in a common
latent space of the multi-modal input data through an unsu-
pervised training and the second is used for the classification
task purpose.

2.2.1. MME component

The given SPARK dataset is very challenging as the two
modalities, RGB and depth, contain different characteristics
and information. While XDEPTH is mostly similar to a bi-
nary mask (in gray scale), XRGB contains more information
so the two modalities can not be treated similarly. In conse-
quence, we make use of six different blocs in order to project
the two modalities in a common latent space and profit from
the multi-modal information:
ResNET18 R18: Rd1 → RdR18 . A pre-trained ResNET18
network [15] is used to extract high-level features of the RGB
images. The network’s output is a dR18-dimensional feature
vectors.
RGB Encoder E1: RdR18 → Rd. This encoder projects the
input RGB embedding R18(XRGB) to a low-dimensional
features subspace through a shallow fully connected neural
network. It outputs a d-dimensional vector Z(1).
DEPTH Encoder E2: Rd2 → Rd. An encoder made up
of stacked convolution-batch normalization-ReLu layers for
extracting high-level features of its input DEPTH images. It
outputs d-dimensional vector Z(2).
Fusion F : R2d → Rd. The intuition from the fusion network
is to capture the shared semantics of the multi-modal data
from the resulting V embedding vectors. It takes the output
of the encoders and derives the fused target feature vector Z
through a non-linear fully connected layer.
RGB Decoder D1: Rd → RdR18 . This decoder projects the
fused vector back to the embedding space. It has a mirrored
architecture to E1.
DEPTH Decoder D2: Rd → Rd2 . Similar to D1, this de-
coder takes as input the fused vector and reconstructs the
original DEPTH image inputted to E2 through a stacked
transposed-convolution layers.

2.2.2. Classification component

In order to exploit the common feature vectors outputted by
F , we can directly either feed them directly to a classical
algorithm (e.g K-nearest neighbors, random forest, support-
vector machines) or add another neural networks bloc to
the overall architecture in order to back-propagate the classi-
fication loss to fine-tune the earlier RGB and Depth Encoders.

Classification MLP head T : Rd → R11. Basically, it is
a stack of non-linear fully-connected layers for extracting

task-related features followed by an output layer (i.e clas-
sification layer C). It takes the multi-modal representation
obtained by F and outputs a vector of probabilities of each
class by C.

2.3. Objective Functions

We partition the problem in two sub-problems; the first one
is to learn the multi-modal representation component in an
unsupervised way and the second is to solve the task of
classification. Thus, we optimize two objective functions
separately.
Auto-Encoder loss: The purpose is that the multi-modal
feature vector is representative enough and holds the cross-
modality information. The reconstruction loss is defined as
follow:

Lrgb = ‖R18(XRGB)−D1(E1(R18(XRGB)))‖1 (1)

with R18(XRGB) being the embedding vector extracted by
the Resnet18 network. Eq. 1 measures the distance between
the original embeddings outputted by the ResNET18 network
on the RGB images and the decoded embeddings outputted
from the RGB decoder.

Ldepth = ‖XDEPTH −D2(E2(XDEPTH))‖22 (2)

Eq. 2 measures the reconstruction loss between the orig-
inal depth images and the reconstructed depth images by the
Depth Decoder.

The total reconstruction loss can be computed as

Lrec = αLdepth + β.Lrgb (3)

with α and β are weights that allow balancing the impact of
each AE depending on the initial modality.

Classification task loss: We use the categorical cross-
entropy loss to train our classification head.

Ltask = − log(ŷc) (4)

Where ŷ is the 1× 11 output vector of the classification layer
C containing the classes’ probabilities, c is the ground truth
class and ŷc is the output energy for class c.

3. EXPERIMENTS AND RESULTS

3.1. Training Methodologies

In order to validate the aforementioned methodology, we first
pre-train the AE networks in a totally unsupervised way by
minimizing the reconstruction loss Lrec. Secondly, we exper-
imented two supervised training methods (with/without the
classification MLP head) to get the final classification results.
Then, we do a comparison between the two methods based on
a visualisation of the latent space and the performance on the
validation set.



Fig. 1. Proposed multi-modal Classifier on the SPARK dataset

• Method1: The MME component (RGB and Depth
Auto-encoders E1 and E2 and the fusion layer F ) is
trained in an unsupervised manner by minimizing the
reconstruction loss Lrec. Then, we convert the input
images to fused latent vectors and use these vectors
as input features to some classical machine learning
models (i.e K-nearest neighbors (KNN), random forest
(RF, support-vector machines (SVM)).

• Method2: The method2 involves the classification
MLP head mentioned at the 2.2 section. The training
procedure becomes in three steps:

1. The MME component is pre-trained in an unsu-
pervised manner exactly as done in Method1.

2. The Classification MLP head is trained in a su-
pervised manner and then the classification task
loss Ltask is back-propagated to fine-tune the pre-
trained networksE1, E2 and F . Thus, in this step,
we perform a supervised end-to-end training of
the MME component in combination with a clas-
sification MLP head.

3. The E1, E2, and F networks are frozen, the clas-
sification MLP head is removed, and some classi-
cal ML models are trained on the resulting fused
vectors such as in Method1.

The goal of proposing these two training procedures is to
check the impact of back-propagating the classification loss
on the common latent space (i.e the fused vectors of the RGB
and Depth modalities) on the downstream task performance.

3.2. Implementation Details

We set the latent dimension d = 64, E1 and D1 to be a
shallow linear layer each (mirrored to each other) and we
made up E2 and D2 of 3 convolution and transposed convo-
lution layers with ReLU activation. We train the AE networks
on mini-batches for 20 epochs with Adam optimizer with a
learning rate lr = 0.0005. The classification MLP head is
made up of a hidden layer with 32-units, a ReLU activation,
a Dropout layer, and the output layer C. We train the task
head in addition to the fusion and encoders networks on mini-
batches for 25 epochs with Adam optimizer with a learning
rate lr = 0.00001.

3.3. Latent Space Visualization & Classification Results

Toward comparing between the two training procedures, we
first visualize the common latent space using the t-SNE [16]
projection. We report the results in Fig. 2. We notice that
the fused vectors obtained by Method2 are grouped into clus-
ters with respect to the class label unlike the latent space in
Method1 which appears as a noise in terms of class clusters.



(a) Method1 (b) Method2

Fig. 2. T-SNE representation of the common latent space found after: (a) Method1 training procedure (AEs trained in fully
unsupervised way without back-propagating the task loss), (b) Method2 training procedure (AEs pre-trained in unsupervised
way then refined with the back-propagating the task loss through the classification MLP head).

Method Classification Classification

Type Model Accuracy (%)

KNN 13.85

1 SVM 18.95

Random forest 18.87

KNN 39.19

2 SVM 42.62

Random forest 43.56

Table 1. Comparison of the classification performance be-
tween the two proposed training procedures and using differ-
ent classification algorithms.

This can be explained by the fact that, in Method1, we learn
features from the multi-modal data in unsupervised way (i.e
based only on the reconstruction performance and without
any information on the labels). However, in Method2, we
applied the additional classification MLP head to refine the
common features for the classification task.

Secondly, we report the classification results of each of
the two training procedures in Table 1. The classical models
such as KNN, SVM and Random forest, applied directly af-
ter the unsupervised training, reached low accuracy values.
However adding the classification MLP head considerably
improves the classification performance as it helps in getting
better common representations by fine-tuning the early-stage
AEs. For instance, the accuracy using the random forest al-
gorithm jumps from less than 19% to more than 43%. The

same observation is made with SVM and KNN algorithms
(an improvement by a factor of 2 and 3 respectively).

4. CONCLUSION & DISCUSSIONS

For the SPARK challenge, we have suggested an AE-based
MME (multi-modal embedding) architecture, consisting of
encoders, fusion layer and decoders, which takes as input
multi-modal images and embed them in a common latent
space. The resulting common feature vectors are further ex-
ploited by a classification component in order to recognize
the space target and solve the downstream supervised task.

We have tested two different training procedures: fully
unsupervised auto-encoder training (to convert the multi-
modal samples into common latent vectors) followed by a
supervised training of some classical ML algorithms based on
the resulting vectors and their corresponding labels (Method1);
or unsupervised auto-encoder training, then fine-tuning the
encoder and fusion networks with an MLP head in a super-
vised setting, and finally freezing the encoder and fusion
networks and training classical ML methods (Method2). We
observed that adding the extra classification MLP head im-
proves the classification performance as it helps in getting
better common representations by fine-tuning the early-stage
AEs. This was also qualitatively visible on the common latent
space projections.

In future works, we plan to combine this architecture with
a scalable AutoML library, such as DeepHyper [17]. Such a
framework will be able to, all at once, train the multi-modal
embedding model, automatically choose the best classifier
and tune all the hyper-parameters including the ones related to
the neural networks that extract the visual high-level features.
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