
Automatic Parameter Tuning for Big Data Pipelines
with Deep Reinforcement Learning

Houssem Sagaama §

R&D department
EURA NOVA
Tunis, Tunisia

0000-0001-8760-3557

Nourchene Ben Slimane§

R&D department
EURA NOVA

Tunis, Tunisia
0000-0003-0434-310X

Maher Marwani
R&D department

EURA NOVA
Tunis, Tunisia

0000-0001-7792-7857

Sabri Skhiri
R&D department

EURA NOVA
Mont-Saint-Guibert, Belgium

0000-0002-0664-5788

Abstract—Tuning big data frameworks is a very important task
to get the best performance for a given application. However,
these frameworks are rarely used individually, they generally
constitute a pipeline, each having a different role. This makes
tuning big data pipelines an important yet difficult task given
the size of the search space. Moreover, we have to consider
the interaction between these frameworks when tuning the
configuration parameters of the big data pipeline. A trade-off
is then required to achieve the best end-to-end performance.
Machine learning based methods have shown great success in
automatic tuning systems, but they rely on a large number
of high quality learning examples that are rather difficult to
obtain. In this context, we propose to use a deep reinforcement
learning algorithm, namely Twin Delayed Deep Deterministic
Policy Gradient, TD3, to tune a fraud detection big data pipeline.
We show through the conducted experiments that the TD3 agent
improves the overall performance of the pipeline by up to 63%
with only 200 training steps, outperforming the random search
on the high-dimensional search space.

Index Terms—Auto-tuning system, Big Data Pipelines, Deep
Reinforcement Learning, Actor-Critic, Performance Optimiza-
tion

I. INTRODUCTION

As data volumes continue to grow at a breakneck pace,
organizations are using big data pipelines to unleash the power
of their data and respond faster to their demands. These big
data pipelines are composed of different frameworks with
different purposes such as ingestion, processing, and storage,
and each of these frameworks comes with a large number of
configurable parameters that need to be tuned to get the best
performance (throughput and latency). For example, Apache
Spark comes with over 180 configurable parameters.

Manually tuning big data pipeline parameters through trial
and error is not the best option, as it is time consuming
and inefficient given the huge search space and complex
dependency between parameters. In addition, it requires in-
depth knowledge of the underlying frameworks used in the
big data pipeline. Therefore, automatic parameter tuning of
big data pipelines becomes a necessity to get the most out of
their performance.

Traditional tuning approaches, such as machine learning and
search methods, have several limitations. On the one hand,

Supported and funded by the Walloon region, Belgium.
§Equal contribution

machine learning approaches require a large number of high-
quality samples to train an accurate performance prediction
model, which is costly and time-consuming. Therefore, there
is a need to find a trade-off between model accuracy and the
cost of data collection. On the other hand, search-based models
do not effectively exploit previously collected data and require
a large amount of data and a large number of experiments. To
address these challenges, we propose to use deep reinforce-
ment learning to tune a big data pipeline as it is based on
a trial-and-error method that uses a few samples to obtain
the optimal configuration that achieves the best performance
of the big data pipeline. Reinforcement learning has already
been used in the task of self-tuning cloud databases or big data
frameworks, however, to the best of our knowledge, optimizing
the performance of a big data pipeline with a reinforcement
learning agent has not yet been proposed in the literature.
To this end, we propose a representation of performance
metrics applied to big data pipelines and implement the twin
delayed deep deterministic policy gradient, TD3, to optimize
a pipeline for a fraud detection application. We show through
a set of conducted experiments that TD3, regardless of the
replay strategy implemented, improves the performance of the
application by up to 63% in comparison with default setting,
after only 200 training steps, outperforming the random search
agent.

The rest of the paper is organized as follows: in section
II, we first discuss existing auto-tuning methods and their
limitations in the context of pipeline performance optimization
and then present the performance function used to evaluate
the performance of big data pipelines. Next, in Section III,
we outline the state of the art of reinforcement learning
algorithms and explain the choice of TD3. In Section IV,
we describe the fraud detection use case used across the
experiments and show the performance of the TD3 agent to
tune it. Lastly, we conclude the paper in Section V and present
future improvements to our work.

II. AUTO-TUNING BIG DATA FRAMEWORKS

A. Related Works

Existing auto-tuning systems are based on different ap-
proaches that can be grouped into five categories. Rule-based
methods essentially rely on domain expert guidance [1]–[3].

978-1-6654-2744-9/21/$31.00 ©2021 IEEE

They are simple to implement, but require in-depth knowledge
of the system’s internals. The disadvantage of this approach
is that it takes a lot of time to follow the guidance structure.
Although choosing a few parameters to tune minimizes the
computational time, this can present a risk of performance
degradation due to bad configurations.
Model-based methods are another category that uses cost-
based analytical designs to profile, predict, and optimize the
performance of specific frameworks. They are computation-
ally practical and can provide predictions with satisfactory
accuracy. But it remains difficult to capture the complexity
of the system’s internal and runtime components. Examples
of model-based systems can be found in [4]–[7].
Simulation-based methods use a simulated environment to
learn and build models to predict the performance in different
environments [8]–[11]. They provide insights into the appli-
cation’s runtime characteristics at a reasonable cost and in
a safe manner. Nevertheless, they are inefficient due to the
complexity of building a simulator, which requires extensive
knowledge of the system internals and the application work-
load.
Search-based methods as in [12]–[16], consist of reproducing a
set of runs on the same workload with different configuration
settings until they converge to a suitable setting. Although
they are simple to run and do not require much knowledge
of the system internals, they require a large amount of data
and a high number of experiments. In addition, the higher the
dimension of the search space, the more difficult to find the
optimal configuration.
Finally, learning-based methods rely on machine learning algo-
rithms to train a performance prediction model which is used
later to find the optimal configuration using a search model
such as random search and genetic algorithm [17]–[21]. With
these techniques, no specific information is required about the
internal elements of the system, and relatively good results can
be obtained. However, some algorithms may require a large
training data set. In addition, choosing the right model and
appropriate hyperparameters can be a difficult task.
Fig. 2 summarizes the differences between the different tuning
methods and their evolution to cover more parameters while
decreasing the required knowledge about the system under
tuning.
Although most of these methods can successfully be applied

Fig. 1. Evolution of tuning methods over time

to tune a given framework and potentially lead to good results,
some of them have limitations when it comes to tuning a

multi-framework system. In fact, assuming that rule-based
methods rely on the expertise of the domain specialists and
require in-depth knowledge of the system to be tuned, it is
impossible to cover the number of frameworks in the pipeline
with the required advanced knowledge. Not to mention the
fact that rule-based methods can only cover a small number
of parameters, making them unsuitable in the context of a
multi-framework parameter tuning.
This is also the case for the model-based methods. They are
not able to cover the number of configurable parameters in
the pipeline. Another problem that can be raised with model-
based methods is their lack of sustainability. In fact, these
methods are highly dependent on the version of the system
under tuning, upgrading the framework to a new version
will potentially invalidate the model. This will be even more
complicated for a multi-framework model.
Regarding simulation-based tuning methods, the main limi-
tation that can be pointed out is the complexity of design-
ing a simulation environment for multiple frameworks while
respecting, not only the specificity of each framework that
requires a deep knowledge of the system internals, but also the
relationship between the different frameworks in the pipeline.
Finally, search-based methods can be applied to tune a big data
pipeline, but they require a large amount of data to converge
to a good performance. This is mainly due to the highly
dimensional search space of the pipeline being tuned. That
being said, in this work we are interested in using learning-
based methods, in particular those based on the trial-and-error
learning strategy, which do not require any prior knowledge
of the environment, nor a lot of training data to converge to
good performance.

B. Problem Statement

Consider a function Perf(c, r, w, d) which its output is a
measure of the performance of a given application running on
the big data pipeline. Perf takes as input the configuration c,
the hardware resources r, the workload w, and the input data
d. It is a function of the two metrics of reference regarding
big data performance, i.e. the throughput and the latency over
the pipeline. We represent the end-to-end latency, Lg , as the
sum of the individual latency values for every framework in the
pipeline i, Li, (1), and we represent the end-to-end throughput,
Tg , as the geometric mean of the individual frameworks
throughput values, Ti, (2) since the individual throughput
values can be in significantly different ranges depending on
the corresponding framework and the job being run.

Lg =
∑
i

Li (1)

Tg =
n

√√√√ n∏
i=1

xi (2)

Based on these definitions, Perf will be formulated as fol-
lows:

Perf(c, r, w, d) =
Lg
Tg

(3)

Finally, we can formulate the tuning problem as an opti-
mization problem where we maximize the performance func-
tion illustrated in (3) as follows:

c∗ = argmax
c

Perf(c, r, w, d) (4)

In this work, the hardware resources r and the workload
w are constant. We study only the impact of tuning the
configuration c with different data sizes d.

III. REINFORCEMENT LEARNING

In reinforcement learning, the agent seeks to maximize a
numerical reward signal while learning to map states to actions
[22]. Particularly, RL online methods rely on the concept of
trial-and-error with a direct interaction between the agent and
the environment in which it evolves. As shown in Fig. 2, at
every step t the agent observes the current state St, and takes
an action At, after which it will receive a reward Rt from the
environment, depending on the quality of this action at the
state St, and observe the new state St+1. The agent performs

Fig. 2. The agent-environment interaction in a RL system [22].

actions according to a policy that it will try to optimize over
the iterations. A policy defines the agent’s behavior. It is a
correspondence between the state space and the action space.
The reward signal indicates immediately how good is the
action that was taken by the agent. But since the goal is to
maximize the long-term reward, the agent must know how
to estimate the value of a given action at a given state.
The value function indicates what is good in the long run.
The value of a state is basically a prediction of the total
amount of reward that could be accumulated in the future
if the agent starts from that state. Unlike rewards that are
directly given by the environment, values must be frequently
re-estimated based on the sequence of observations made by
the agent over the iterations. Value estimation is considered
to be the most challenging part of RL algorithms, along with
the exploration/exploitation trade-off. In fact, at each step, the
agent can choose either to maximize the immediate reward
(exploitation behavior) or to try a new action that might later
lead to a better reward (exploration behavior). A good balance
between both strategies is crucial for the agent to reach the
best policy.

A. Problem Formulation

An optimization problem can be translated into a reinforce-
ment learning one after an efficient representation of the RL
problem components. We represent the different components
of our RL tuning system as follows:

a) The State Space: in this work, the state is represented
by the set of metrics that the agent will read via the monitoring
tool for the different jobs running in the pipeline.

b) The Action Space: the tuning agent will recommend a
configuration setting for the whole list of tunable parameters
that it will receive. An action is a simultaneous association
of N values to the N parameters to configure with respect to
their corresponding ranges. In this work, the total number of
parameters under tuning is 46 (see table I for more details)

TABLE I
NUMBER OF TUNED PARAMETERS IN THE PIPELINE

Component of the pipeline Number of parameters
Spark 20∗

Cassandra 14
Kafka 12

∗Including the Spark-Cassandra connector parameters.

c) The reward function: The reward is a numerical signal
perceived by the agent after every recommendation. We define
the reward function as in (5) with respect to the initial
performance Perfinit obtained with the default setting, and
to both the current and past performances of the agent, Perft
and Perft− 1 respectively.

reward =


0 if Perft = Perfinit

−100 if bad config
Perft−Perft−1

|Perft−Perfinit| otherwise
(5)

The agent perceives a negative reward for each bad config-
uration. A recommended configuration is considered to be
erroneous if a) the execution time of any of the jobs running
in the pipeline exceeds the time limit, or b) the configuration
results in an error in one of the applications (e.g. a memory
error).

B. The Tuning Agent

Different RL approaches have been applied to the auto-
tuning problem. For instance, MonkeyKing [21] applies value-
based RL algorithms to autotune Apache Spark. DQN [23]
was proposed to address the challenge of approximating
the optimal action-value function (6) by using deep neural
networks.

Q∗(s, a) = max
π

E[rt+γrt+1+γ
2rt+2+ .. |st = s, at = a, π]

(6)
DQN was the first to introduce the replay memory buffer to
avoid the correlation of training data, which is likely to lead
to poor convergence of the network. To solve the problem
of non-stationarity due to the constant update of the targets
during the training, DQN introduced the target networks that
are less frequently updated to allow for more stationarity. But
since the target networks are not updated frequently enough,
the target values will be inaccurate during the time between
two successive updates, which makes the convergence of DQN
slow. Moreover, although the replay buffer helped solve the
data correlation problem, it should be mentioned that with a

large buffer the agent is more likely to pull old transitions
that were generated by a poor policy to train the network. The
Prioritized Experience Replay, PER, has been proposed as an
alternative in [24]. It considers replaying important transitions
more frequently, instead of recurrently using obsolete ones.
In a different approach, CDBTune [18] and QTune [20]
implemented an actor-critic method, namely Deep Determin-
istic Policy Gradient, DDPG, to auto-tune cloud databases.
Actor-critic methods learn a value-function (like value-based
methods) and a policy (like policy gradient methods) at the
same time, thus combining advantages of both methods. Since
DQN is more suitable for discrete action spaces, DDPG can be
perceived as an extension of DQN to continuous action spaces
[25]. In fact, like DQN, DDPG uses the replay memory buffer
to store past experiences and learn off-policy. It also uses the
target network to bring stability to the learning process. But,
instead of simply updating the target network with a fixed
frequency, DDPG uses the sliding average (7) for both actor
and critic. Doing so will make sure the target network (8) is
still “behind” the trained network, but not as much as with
DQN.

φtarg ← ρφtarg + (1− ρ)φ (7)

y(r, s′, d) = r + γ(1− d)max
a′

Qφ(s
′, a′) (8)

As for the policy learning, DDPG trains a deterministic policy
to maximize the Q-value. Since it’s an off-policy algorithm,
the behavior policy is separate from the target policy. It is
updated by one step of gradient ascent (9), while the Q-
function is updated by one step of gradient descent with a
batch of transitions B (10).

∇θ =
1

|B|
∑
s∈B

Qφ(s, πθ(s)) (9)

∇φ =
1

|B|
∑

(s,a,r,s′,d)∈B

(Qφ(s, a)− y(r, s′, d))2 (10)

For a better exploration strategy, DDPG adds noise to actions
during training. It can also be kept fixed or reduced over the
course of training as well. DDPG is a good alternative to
DQN, but it has some limitations though. This is because,
in addition to being sensitive hyperparameters, the learned
Q-function is also very likely to start over-estimating the Q-
values throughout the training, which makes the policy exploit
the errors in the Q-function. Twin Delayed Deep Deterministic
Policy Gradient, TD3 [26], solves these limitations in the same
way as Double DQN [27] by adopting two Q-functions instead
of one, and using the smaller value in the target to avoid the
risk of over-estimation (11). TD3 learns its Q-functions in the
same way that DDPG learns its single Q-function.

y(r, s′, d) = r + γ(1− d) min
i=1,2

Qφi,targ
(s′, a′(s′)) (11)

TD3 also performs target policy smoothing by adding addi-
tional noise to actions during training to avoid having peaks
of Q-values that are most likely to be exploited by the policy
and to lead to incorrect behavior like for DDPG. Actions that

will be used for the Q-learning target are based on the target
policy πθtarg with a clipped noise added on each dimension
(12). The resulting target action is then clipped to lie in the
valid action range.

a′(s′) = clip(πθtarg
(s′) + clip(ε,−c, c), aLow, aHigh),

ε ∼ N(0, σ)
(12)

Finally, the policy is trained following the same rule as DDPG,
except that for TD3 the updates are less frequent than for
DDPG. This increases the stability of the learning process.

In this work, we implement a TD3 agent to auto-tune a
pipeline of Big Data frameworks. In fact, considering that
value-based methods are only suitable for discrete actions and
that our action space is a high-dimensional continuous space,
its discretization will not only lead to a loss of information
caused by the binning, but it will also drastically increase the
complexity of our optimization problem (the curse of dimen-
sionality). DQN and its variants are therefore not applicable
for our tuning problem.
Since DDPG, the actor-critic method, showed good results in
a different tuning task, and given that TD3 is supposed to
improve performance over DDPG, we propose to implement
TD3 for our tuning task.
In our implementation, for a better exploration at the beginning
of the training, the agent takes random actions for a fixed
number of steps sampled over valid actions. After that, the
agent returns to normal TD3 exploration by adding noise to
actions at training time. The agent interacts with the Big Data
environment via the RL environment interface.
We compare the performance of the TD3 agent with its two
replay strategies with random search. We express the perfor-
mance improvement rate as the obtained gain in performance
in comparison with the initial performance Perfinit obtained
with the default setting.

IV. EXPERIMENTAL SETUP

A. The Use Case

Fig. 3. The fraud detection big data pipeline.

With the emergence of payment systems and the increasing
customer confidence in electronic payments, fraud detection
has become a critical factor. However, detecting fraudulent
transactions within seconds - so that the card provider can stop
the transaction - requires scalable machine learning techniques
and an architecture that can ingest, process, and analyze
massive amounts of data. Fortunately, the expansion of the

open-source big data frameworks brought new possibilities
and perspectives to the fraud detection field. In this paper,
we used the fraud detection use case as an input application
to our tuning agent, aiming at optimizing its performance as it
is close to real-world use cases and combines both streaming
and batch processing workloads, leveraging popular big data
frameworks. This fraud detection pipeline, shown in Fig. 3, is
based on an existing Github repository 1, and integrates four
Big Data frameworks that can be tuned:

Kafka: is a distributed messaging system that decouples
processing from data producers and stores streams of events
durably.

Spark: is a unified big data processing engine, with
integrated modules for streaming, SQL, machine learning, and
graph processing.

Cassandra: is a NoSQL distributed database that offers
high availability and fault tolerance without sacrificing perfor-
mance.

Hadoop Distributed File System (HDFS): is a highly
available distributed file system that stores large files and
provides high throughput to access them.
As shown in Fig. 3, the fraud detection application is based
on the following three main workloads:
• The extract, transform and load workload (ETL)

responsible for reading and transforming transactions and
customer data from HDFS using Spark SQL and then
storing it in Cassandra.

• The Machine Learning workload is responsible for
reading data from Cassandra, and pre-processing them,
then finally training a logistic regression model using
Spark ML to detect fraudulent transactions.

• The streaming workload is responsible for reading a
stream of transactions from Kafka and checking if the
transaction is a fraud, and finally storing the results in
Cassandra.

In order to improve the original fraud detection pipeline and
adapt it to our needs, we made the following changes: First,
we integrated HDFS as a storage layer and implemented a
data generator for customer and transaction data. Second,
we worked on the virtualization of the entire fraud detection
pipeline as a Docker container, and prepared the pipeline for
deployment in Kubernetes. Finally, we replaced the Random
Forest model used in the machine learning workload with
Logistic Regression, as Random Forest consumes too much
resources to the point that running with the default configura-
tion became impossible.

B. The Test Scenarios

In this work, we compare the performance of the reinforce-
ment learning algorithm TD3 for tuning the big data pipeline,
against a baseline, i.e. random search.
For our TD3 agent, we evaluate the effectiveness of two dif-
ferent experience replay strategies, namely the classic random
experience replay and the prioritized experience replay. The

1https://github.com/SainathDutkar/Fraud Transaction Monitor

TD3 agent, with both replay strategies, is trained over 200
steps divided over 4 episodes of 50 steps each. The agent
starts with an exploration phase over 32 steps after which the
agent starts following a policy. The batch size used to train
the networks is 16.
We conducted our experiments using the fraud detection big
data pipeline with different input data sizes. For the first
scenario, we used 5 million rows for the batch workloads,
and for the second, we used 10 million rows. The streaming
input rate is fixed to 200 rows/s for both scenarios.
We ran these experiments on Google Kubernetes Engine
(GKE) with 5 nodes, each with 4 CPUs and 15 GB of memory.

V. RESULTS AND DISCUSSION

The obtained results show that for the fraud detection
pipeline, with a continuous action space of 46 parameters,
our tuning agent achieves a better performance than random
search, regardless of the memory replay strategy used during
the training. In fact, for the first test scenario, with 5 Million
rows as input data, the random agent improves the default
performance by 25% only, raising the initial performance from
about 0.14 to 0.17 with a high standard deviation of 0.06.
However, the TD3 agent, for the same test scenario, and after
200 steps of training only, improves the default performance
by around 60% bringing the performance to a higher threshold
of 0.22 with a small standard deviation of about 0.009.
We also observed that the agent trained with prioritized
experience replay performs better than the one trained with the
random experience replay. In fact, the former achieves a 6%
better performance than the latter. Fig. 4 shows that the TD3
agent trained with the prioritized experience replay achieves
a higher performance during the training process compared
to the one trained with random experience replay. This leads
to a better policy at evaluation, as the aforementioned results
show.
Details about the obtained results with the different tuning
methods are presented in Table II, Table III and Table IV for
the performance, the end-to-end latency, and the end-to-end
throughput respectively.

Fig. 4. TD3 training process with different replay strategies.

A similar behavior is observed with a higher input data
size of 10M rows. The random agent has a performance
improvement rate of 29% against 39% and 41% for the two
TD3 agents with random experience replay and prioritized
experience replay respectively.

TABLE II
PERFORMANCE RESULTS

Data size Agent avg. perf. std.dev. Imprv
Default 0.14274 – –

5M rows Random Search 0.17204 0.06090s 25.66%
TD3 - Random E.R 0.22321 0.0073s 56.37%

TD3 - P.E.R 0.22640 0.0094s 63.13%
Default 0.09762 – –

10M rows Random Search 0.12670 0.03424 29.79%
TD3 - Random E.R 0.13604 0.00927 39.36%

TD3 - P.E.R 0.13782 0.00554 41.18%

TABLE III
END-TO-END LATENCY RESULTS

Data size Agent avg. lat. std.dev. Imprv
Default 502.999s – –

5M rows Random Search 434.754s 131.902s -15.11%
TD3 - Random E.R 377.547s 9.076s -24.94%

TD3 - P.E.R 374.110s 10.195s -26.62%
Default 840.332s – –

10M rows Random Search 759.95s 191.976s -10.34%
TD3 - Random E.R 731.47s 23.450s -12.95%

TD3 - P.E.R 681.289s 17.907s -18.92%

Detailed results for the performance, the end-to-end latency,
and the end-to-end throughput can be found in Table II,
Table III and Table IV.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we propose to apply an actor-critic algorithm,
namely Twin Delayed Deep Deterministic Policy Gradient,
TD3, to automatically tune a big data pipeline. For the purpose
of this article, we applied the tuning agent to optimize the
performance of a fraud detection application. The choice of
such a use case was made to show the performance of TD3
on a near real world use case, keeping in mind that the pipeline
includes a number of widely used tunable big data frameworks.
We have shown that TD3 improves the performance by 63%
compared to the default configuration with only 200 steps
despite the size of the continuous action space.
The experimental results also showed that prioritized experi-
ence replay improves the performance of the agent compared
to the conventional random experience replay. However, it
should be mentioned that the difference in performance be-
tween agents trained with the two strategies is not significant.
In our future work, we suggest exploring and comparing

TABLE IV
END-TO-END THROUGHPUT RESULTS

Data size Agent avg. tput std.dev. Imprv
Default 71.385 – –

5M rows Random Search 77.038 21.608 9.79%
TD3 - Random E.R 97.094 1.345 25.71%

TD3 - P.E.R 97.61 1.779 27.25%
Default 81.661 – –

10M rows Random Search 92.602 21.608 13.80%
TD3 - Random E.R 99.733 2.850 18.07%

TD3 - P.E.R 100.478 2.601 18.82%

other machine learning solutions to further improve the tuning
performance of big data pipelines. We are also interested
in meta-reinforcement learning to test its ability to adapt to
workload variation on the same pipeline. In fact, it would
be interesting to train a single model on different tasks and
validate it on a new, previously unknown task. The agent will
then recommend the best configuration based on its knowledge
of previously tuned applications.

REFERENCES

[1] P. A. Ivanenko, A. Y. Doroshenko, and K. A. Zhereb, “TuningGenie:
Auto-Tuning Framework Based on Rewriting Rules,” in Information and
Communication Technologies in Education, Research, and Industrial Ap-
plications, V. Ermolayev, H. C. Mayr, M. Nikitchenko, A. Spivakovsky,
and G. Zholtkevych, Eds. Cham: Springer International Publishing,
2014, pp. 139–158.

[2] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and
S. Pasupathy, “Do Not Blame Users for Misconfigurations,” in Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, ser. SOSP ’13. New York, NY, USA: Association for
Computing Machinery, 2013, pp. 244–259.

[3] R. Suda, K. Naono, K. Teranishi, and J. Cavazos, Software Automatic
Tuning: Concepts and State-of-the-Art Results. New York, NY: Springer
New York, 2010, pp. 3–15.

[4] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: A Self-tuning System for Big Data Analytics,” in In
CIDR, 2011, pp. 261–272.

[5] C. Liu, D. Zeng, H. Yao, C. Hu, X. Yan, and Y. Fan, “MR-COF: A
Genetic MapReduce Configuration Optimization Framework,” in Algo-
rithms and Architectures for Parallel Processing, G. Wang, A. Zomaya,
G. Martinez, and K. Li, Eds. Cham: Springer International Publishing,
2015, pp. 344–357.

[6] J. Shi, J. Zou, J. Lu, Z. Cao, S. Li, and C. Wang, “MRTuner: A Toolkit to
Enable Holistic Optimization for Mapreduce Jobs,” Proc. VLDB Endow.,
vol. 7, no. 13, pp. 1319–1330, aug 2014.

[7] N. Mishra, H. Zhang, J. D. Lafferty, and H. Hoffmann, “A probabilistic
graphical model-based approach for minimizing energy under perfor-
mance constraints,” SIGARCH Comput. Archit. News, vol. 43, no. 1, p.
267–281, Mar. 2015.

[8] S. Kadirvel and J. A. B. Fortes, “Grey-Box Approach for Performance
Prediction in Map-Reduce Based Platforms,” in 2012 21st International
Conference on Computer Communications and Networks (ICCCN), jul
2012, pp. 1–9.

[9] K. Wang, M. Maifi, and H. Khan, “Performance Prediction for Apache
Spark Platform,” 2015.

[10] M. Cardosa, P. Narang, A. Chandra, H. Pucha, and A. Singh, “STEA-
MEngine: Driving MapReduce provisioning in the cloud,” in 2011 18th
International Conference on High Performance Computing, dec 2011,
pp. 1–10.

[11] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “A simulation approach
to evaluating design decisions in MapReduce setups,” in 2009 IEEE
International Symposium on Modeling, Analysis Simulation of Computer
and Telecommunication Systems, 2009, pp. 1–11.

[12] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and
Y. Yang, “BestConfig: Tapping the performance potential of systems
via automatic configuration tuning,” in SoCC 2017 - Proceedings of the
2017 Symposium on Cloud Computing. Association for Computing
Machinery, Inc, sep 2017, pp. 338–350.

[13] G. Liao, K. Datta, and T. L. Willke, “Gunther: Search-Based Auto-
Tuning of MapReduce,” in Euro-Par 2013 Parallel Processing, F. Wolf,
B. Mohr, and D. an Mey, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 406–419.

[14] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A. R. Butt, and N. Fuller,
“MRONLINE - MapReduce Online Performance Tuning,” Proceedings
of the 23rd international symposium on High-performance parallel and
distributed computing - HPDC ’14, 2014.

[15] S. Kumar, S. Padakandla, L. Chandrashekar, P. Parihar, K. Gopinath, and
S. Bhatnagar, “Scalable Performance Tuning of Hadoop MapReduce: A
Noisy Gradient Approach,” in 2017 IEEE 10th International Conference
on Cloud Computing (CLOUD), jun 2017, pp. 375–382.

[16] S. Duan, V. Thummala, and S. Babu, “Tuning database configuration
parameters with ituned,” Proceedings of the VLDB Endowment, vol. 2,
no. 1, pp. 1246–1257, 2009.

[17] H. Wang, S. Rafatirad, and H. Homayoun, “A+ Tuning: Architec-
ture+Application Auto-Tuning for In-Memory Data-Processing Frame-
works,” in 2019 IEEE 25th International Conference on Parallel and
Distributed Systems (ICPADS), dec 2019, pp. 163–166.

[18] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang,
T. Cheng, L. Liu, M. Ran, and Z. Li, “An End-to-End Automatic
Cloud Database Tuning System Using Deep Reinforcement Learning,”
in Proceedings of the 2019 International Conference on Management
of Data, ser. SIGMOD ’19. New York, NY, USA: Association for
Computing Machinery, 2019, pp. 415–432.

[19] C. Bitsakos, I. Konstantinou, and N. Koziris, “DERP: A deep re-
inforcement learning cloud system for elastic resource provisioning,”
in Proceedings of the International Conference on Cloud Computing
Technology and Science, CloudCom, vol. 2018-Decem, 2018, pp. 21–
29.

[20] G. Li, X. Zhou, S. Li, and B. Gao, “QTune: A Query-Aware Database
Tuning System with Deep Reinforcement Learning,” Proc. VLDB En-
dow., vol. 12, no. 12, pp. 2118–2130, aug 2019.

[21] H. Du, P. Han, Q. Xiang, and S. Huang, “Monkeyking: Adaptive pa-
rameter tuning on big data platforms with deep reinforcement learning,”
Big Data, vol. 8, no. 4, pp. 270–290, 2020.

[22] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[24] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2016.

[25] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” 2019.

[26] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” 2018.

[27] H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” ArXiv, vol. abs/1509.06461, 2016.

