

Copenhagen, June 2022

Industrial challenges of evolving graph neural networks (GNNs)

DEBS 2022

Madalina Ciortan, Head of Data Science @ EURANOVA

EURA NOVA

A DATA COMPANY AI CHAMPION IN BE

Use data to explore, craft & serve the vision of leading companies

Serve your business ambition from POC to production.

data consulting

Craft

solutions to speed up your process.

solutions incubator

Explore future technology to address today's challenges.

research centre

Large graphs are nowadays ubiquitous

Where graphs get used

Pharma

Metabolic pathways & genetic regulation

Material Science

Knowledge graph for material science

Mrdjenovich, David & Horton, Matthew & Montoya, Joseph & Legaspi, Christian & Dwaraknath, Shyam & Tshitoyan, Vahe & Jain, Anubhav & Persson, Kristin. (2020). **propnet: A Knowledge Graph** for Materials Science. Matter. 10.1016/j.matt.2019.11.013.

Automotive

Connected car graph profile

D. Alvarez-Coello, D. Wilms, A. Bekan and J. M. Gómez, **"Generic Semantization of Vehicle Data 3treams,"** 2021 IEEE 15th International Conference on Semantic Computing (ICSC), 2021, pp. 112-117

What about new data?

Temporal/Evolving graph networks

Plasticity/Stability dilemma:

- New important patterns may appear
- Some historical patterns remain relevant

Temporal/ Evolving/Dynamic graphs

https://blog.twitter.com/engineering/en_us/topics/insights/2021/temporal-graph-networks

Challenges

- Constant updates
 detect new patterns while keeping previous knowledge
- Large graphs → **memory efficient** models are needed
- We need accurate, fast and trustworthy models

- → We research and contribute to:
 - Model explainability
 - **Continual** learning

Explainability

What is GNN model explainability?

Identifying the:

- Nodes/ node features
- Edges/ edge features

used by the GNN model to make predictions

-> create an explanatory subgraph

- Sparsity: minimum set of selected features (nodes/edges/features)
- **Stability**: similar explanations for similar inputs
- Fidelity of predictions: minimum difference between whole graph prediction and the subgraph prediction

How can we explain GNNs?

- Generalize explainability methods designed for traditional NN
- Graph topology introduces **additional challenges**
- Explainability methods for static graphs can be applied to evolving graphs

EURANOVA.EU

Gradient based methods

1. Gradient-based	2. Decomposition	3. Perturbation-based	4. Surrogate models
-------------------	------------------	-----------------------	---------------------

 Larger gradients or hidden feature-map values indicate higher input feature importance

 Examples: CAM, Grad-CAM, SA, Guided BP

Decomposition methods

1. Gradient-based

2. Decomposition

3. Perturbation-based

4. Surrogate models

- The prediction score is decomposed layer-by-layer until the input into sums of importance scores
- *Examples*: LRP, GNN-LRP, ExcitationBP

Perturbation based methods

1. Gradient-based

2. Decomposition

3. Perturbation-based

4. Surrogate models

- A set of **masks (node/ edge)** is learned by input perturbations and identifies the important input features
- *Examples*: GNNExplainer, PGExplainer, ZORRO, GraphMask, SubgraphX
- Methods based on **RL** (e.g. RGExplainer) are currently studied at ENX

[1]. Explainability in GNNS: A Taxonomic Survey, Hao Yuan et. al

Surrogate methods

1. Gradient-based	2. Decomposition	3. Perturbation-based	4. Surrogate models
-------------------	------------------	-----------------------	---------------------

- **Simple** and **interpretable surrogate** model to approximate the complex predictions of GNNs
- *Examples*: GraphLime, RelEx, PGMExplainer

Which method should I use?

- Few surveys [1-3]
- Lack of experimental exercises
- No clear guidelines and performance evaluation

Method	TYPE	LEARNING	TASK	TARGET	BLACK-BOX	FLOW	DESIGN
SA [52], [53]	Instance-level	×	GC/NC	N/E/NF	×	Backward	×
Guided BP [52]	Instance-level	×	GC/NC	N/E/NF	×	Backward	×
CAM [53]	Instance-level	×	GC	N	×	Backward	×
Grad-CAM [53]	Instance-level	×	GC	N	×	Backward	×
GNNExplainer [44]	Instance-level	1	GC/NC	E/NF	1	Forward	1
PGExplainer [45]	Instance-level	1	GC/NC	E	×	Forward	1
GraphMask [55]	Instance-level	1	GC/NC	E	×	Forward	1
ZORRO [54]	Instance-level	×	GC/NC	N/NF	1	Forward	1
Causal Screening [56]	Instance-level	×	GC/NC	E	1	Forward	1
SubgraphX [46]	Instance-level	1	GC/NC	Subgraph	1	Forward	1
LRP [52], [57]	Instance-level	×	GC/NC	N	×	Backward	×
Excitation BP [53]	Instance-level	×	GC/NC	N	×	Backward	×
GNN-LRP [58]	Instance-level	×	GC/NC	Walk	×	Backward	1
GraphLime [59]	Instance-level	1	NC	NF	1	Forward	×
RelEx [60]	Instance-level	1	NC	N/E	1	Forward	1
PGM-Explainer [61]	Instance-level	1	GC/NC	N	1	Forward	1
XGNN [43]	Model-level	1	GC	Subgraph	1	Forward	1

Continual learning

Approach	Description
Joint training	Train arbitrarily on old + new data → <i>High computational cost</i>
Online learning	Train on new data → Catastrophic forgetting
Continual learning	Remember existing information and capture new patterns

New data

+

Approach	Description	nance
Joint training	Train arbitrarily on old + new data → <i>High computational cost</i>	Perform
Online learning	Train on new data → <i>Catastrophic forgetting</i>	
Continual learning	Remember existing information and capture new patterns	

Historical data + New data

Catastrophic forgetting

93 %

 T_1

Initial State

Approach	Description
Joint training	Train arbitrarily on old + new data → <i>High computational cost</i>
Online learning	Train on new data → <i>Catastrophic forgetting</i>
Continual learning	Remember existing information and capture new patterns

New data

Historical

data

+

Catastrophic forgetting

CONFIDENTIAL

Approach	Description
Joint training	Train arbitrarily on old + new data → <i>High computational cost</i>
Online learning	Train on new data → <i>Catastrophic forgetting</i>
Continual learning	Remember existing information and capture new patterns

Catastrophic forgetting

EURANOVA.EU

CONFIDENTIAL

Historical data

+

Continual learning

- Terminology: lifelong learning = continual learning = incremental learning = never-ending learning
- The objective is to learn a task T(t) with graph data G(t) while maintaining the performance and avoiding the **catastrophic forgetting** for T(1), T(2), ... ,T(t-1)
- We can consider **new evolving data** as a new task (e.g. <u>Traffic Stream</u> model)

 $G(t) = G(t-1) + \Delta G(t)$

Rehearsal approaches

1. Rehearsal Approach	2. Regularization Approach	3. Architectural Approach
-----------------------	-------------------------------	---------------------------

- Keep a buffer of representative samples of each past task (Experience Replay) to be combined with new data
- Sample selection method

- Examples: ER-GNN, Open-world Node Classification

Regularization approaches

1. Rehearsal Approach

2. Regularization Approach

3. Architectural Approach

- Design dedicated loss functions
- Most popular example is EWC (Elastic Weight Consolidation), which penalizes the updates to the weights important to previous tasks

- Examples: Continual GNN

Architectural approaches

1. Rehearsal Approach	2. Regularization Approach	3. Architectural Approach
-----------------------	-------------------------------	---------------------------

- Change the **architecture** (layers/activation functions) of the GNN to address a new task and prevent forgetting previous ones
- A baseline example is adding classification heads/layers for each new task (e.g. Progressive NNs)
- Existing methods (on CNNs) assume the samples are independent, which is not hold in graphs

- *Example*: Feature graphs decorrelate the neighborhood of nodes

Conclusion

No consensus

on the best method for explainability /continual learning

Not enough guidance

to make a contextual educated choice based on the advantages and weaknesses of existing methods 4

Apply existing methods

and our contributions to real-world streaming data (e.g. automotive)

3

We are creating a survey/library

based on extensive experimentation to address these drawbacks

Backup slides

Lifelong graph learning

Traffic forecasting <u>Paper</u>

Scenarios of using GNNs on temporal data

- Use a pretrained GNN in an inductively on new data → the performance degrades gradually
- Retrain the whole network regularly when new data arrives → high computational complexity
- Online learning trains only on the new data (△G)→ can lead to catastrophic forgetting
- Continual learning→ capture new patterns incrementally and consolidate existing information

 $G(t) = G(t-1) + \Delta G(t)$

Graph Lifelong learning: survey

- Terminology: lifelong learning = continual learning = incremental learning = never-ending learning
- The objective is to learn a task T(t) with graph data G(t) while maintaining the performance and avoiding the catastrophic forgetting for T(1), T(2), ... ,T(t-1)

Figure 2: Graph Lifelong Learning Categorization.

Conclusion

- No consensus on the best method for explainability /continual learning
- Not enough guidance to make a contextual educated choice based on the advantages and weaknesses of existing methods

- We are creating a survey/library based on extensive experimentation to address these drawbacks
- Apply existing methods and our contributions to real-world streaming data (e.g. automotive)

Continual learning

Context

- most contributions on explainability study **static** graphs
- only a few dedicated methods for temporal graphs
 - <u>xRTE</u>, <u>RetaGNN</u>, <u>TLogic</u>
 - based on attention
 - don't evaluate the explainability per se

- temporal graph data (e.g. traffic flow) consists of intricate spatial-temporal correlations which are ignored by static models

- the objective is to mine new patterns while consolidating historical knowledge (avoiding catastrophic forgetting)

 when a new task is similar to a previous one, improve the existing model; when a new task is different, transfer knowledge to address it and thus be able to handle new undefined tasks

Approach	Description
Joint training	Train arbitrarily on old + new data → <i>High computational cost</i>
Online learning	Train on new data → <i>Catastrophic forgetting</i>
Continual learning	Consolidate existing information and capture new patterns

Catastrophic forgetting

EURANOVA.EU

CONFIDENTIAL

Historical data

+