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Use data to explore, craft & serve the vision of 
leading companies

Serve 
your business 
ambition from POC 
to production.

Craft
solutions
to speed up
your process.

Explore
future technology
to address
today’s challenges.



Context



Large graphs are nowadays ubiquitous
Where graphs get used

Pharma
Metabolic pathways & genetic 
regulation

Material Science
Knowledge graph for material 

science

Mrdjenovich, David & Horton, Matthew & Montoya, Joseph & Legaspi, Christian & Dwaraknath, 
Shyam & Tshitoyan, Vahe & Jain, Anubhav & Persson, Kristin. (2020). propnet: A Knowledge Graph 
for Materials Science. Matter. 10.1016/j.matt.2019.11.013. 

Automotive
Connected car graph profile

D. Alvarez-Coello, D. Wilms, A. Bekan and J. M. Gómez, "Generic Semantization of Vehicle Data 
Streams," 2021 IEEE 15th International Conference on Semantic Computing (ICSC), 2021, pp. 112-117



Plasticity/Stability dilemma:

- New important patterns may appear
- Some historical patterns remain relevant

What about new data?
Temporal/Evolving graph networks

https://blog.twitter.com/engineering/en_us/topics/insights/2021/temporal-graph-networks

Temporal/ Evolving/Dynamic graphs



- Constant updates → detect new patterns while keeping previous 
knowledge

- Large graphs → memory efficient models are needed
- We need accurate, fast and trustworthy models

→ We research and contribute to:

- Model explainability
- Continual learning

Challenges



Explainability



What is GNN model explainability?

Identifying the:
- Nodes/ node features
- Edges/ edge features

used by the GNN model to 
make predictions

→ create an explanatory subgraph

- Sparsity: minimum set of selected features (nodes/edges/features)
- Stability: similar explanations for similar inputs
- Fidelity of predictions: minimum difference between whole graph 

prediction and the subgraph prediction

http://snap.stanford.edu/gnnexplainer/



How can we explain GNNs?

- Generalize explainability methods designed for traditional NN

- Graph topology introduces additional challenges

- Explainability methods for static graphs can be applied to 
evolving graphs

1. Gradient-based 4. Surrogate models3. Perturbation-based2. Decomposition



Gradient based methods

- Larger gradients or hidden 
feature-map values indicate 
higher input feature importance

- Examples: CAM, Grad-CAM, SA, 
Guided BP

1. Gradient-based 4. Surrogate models3. Perturbation-based2. Decomposition



Decomposition methods

- The prediction score is decomposed 
layer-by-layer until the input into 
sums of importance scores

- Examples: LRP, GNN-LRP, 
ExcitationBP

1. Gradient-based 4. Surrogate models2. Decomposition 3. Perturbation-based



Perturbation based methods

- A set of masks (node/ edge) is learned by input perturbations and identifies the 
important input features 

- Examples: GNNExplainer, PGExplainer, ZORRO, GraphMask, SubgraphX
- Methods based on RL (e.g. RGExplainer) are currently studied at ENX

1. Gradient-based 4. Surrogate models2. Decomposition 3. Perturbation-based

[1]. Explainability in GNNS: A Taxonomic Survey, Hao Yuan et. al



Surrogate methods

- Simple and interpretable surrogate model to approximate the complex 
predictions of GNNs

- Examples: GraphLime, RelEx, PGMExplainer

1. Gradient-based 4. Surrogate models3. Perturbation-based2. Decomposition



- Few surveys [1-3]
- Lack of experimental exercises
- No clear guidelines and performance evaluation

Which method should I use?

[1] Hao Yuan et al . (2021)  "Explainability in Graph Neural Networks: A Taxonomic Survey", https://arxiv.org/abs/2012.15445 
[2] Li, Peibo & Yang, Yixing & Pagnucco, Maurice & Song, Yang. (2022). "Explainability in Graph Neural Networks: An Experimental Survey"
[3] Dai, Enyan and Zhao (2022). "A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability"

https://arxiv.org/abs/2012.15445


Continual learning



Strategies to deal with new tasks/data

Approach Description

Joint training Train arbitrarily on old + new data
→ High computational cost

Online learning Train on new data 
→ Catastrophic forgetting

Continual learning Remember existing information and 
capture new patterns

Historical 
data New data+
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Strategies to deal with new tasks/data

Approach Description

Joint training Train arbitrarily on old + new data
→ High computational cost

Online learning Train on new data 
→ Catastrophic forgetting

Continual learning Remember existing information and 
capture new patterns

Catastrophic forgetting

Historical 
data New data+



- Terminology: lifelong learning = continual learning = incremental learning = 
never-ending learning

- The objective is to learn a task T(t) with graph data G(t) while maintaining the 
performance and avoiding the catastrophic forgetting for T(1), T(2), … ,T(t-1)  

- We can consider new evolving data as a new task (e.g. Traffic Stream model)

Continual learning

3. Architectural Approach2. Regularization 
Approach1. Rehearsal Approach

G(t) = G(t-1) + ΔG(t)

https://arxiv.org/pdf/2106.06273v1.pdf


- Keep a buffer of representative samples of each past task 
(Experience Replay) to be combined with new data

- Sample selection method

- Examples: ER-GNN, Open-world Node Classification

Rehearsal approaches
1. Rehearsal Approach 3. Architectural Approach2. Regularization 

Approach

Historical 
data

Sample selection

=       Train data

New data

ER buffer

New data



- Design dedicated loss functions
- Most popular example is EWC (Elastic Weight Consolidation), 

which penalizes the updates to the weights important to 
previous tasks

- Examples: Continual GNN

Regularization approaches
1. Rehearsal Approach 3. Architectural Approach2. Regularization 

Approach



- Change the architecture (layers/activation functions) of the GNN to 
address a new task and prevent forgetting previous ones

- A baseline example is adding classification heads/layers for each new 
task (e.g. Progressive NNs)

- Existing methods (on CNNs) assume the samples are independent, 
which is not hold in graphs

- Example: Feature graphs decorrelate the neighborhood of nodes

Architectural approaches
1. Rehearsal Approach 3. Architectural Approach2. Regularization 

Approach



Conclusion
No consensus 
on the best method for explainability 
/continual learning

1

Not enough guidance
to make a contextual educated choice 
based on the advantages and weaknesses 
of existing methods

2

We are creating a 
survey/library 
based on extensive experimentation to 
address these drawbacks

3

Apply existing methods 
and our contributions to real-world 
streaming data (e.g. automotive)

4



Questions?



Backup slides



Lifelong graph learning 



Traffic forecasting Paper

https://arxiv.org/pdf/2106.06273v1.pdf


1. Use a pretrained GNN in an inductively on new data → the 
performance degrades gradually

2. Retrain the whole network regularly when new data arrives → 
high computational complexity

3. Online learning trains only on the new data (ΔG)→ can lead to 
catastrophic forgetting

4. Continual learning→ capture new patterns incrementally and 
consolidate existing information

Scenarios of using GNNs on temporal data

G(t) = G(t-1) + ΔG(t)



- Terminology: lifelong learning = continual learning = incremental learning = 
never-ending learning

- The objective is to learn a task T(t) with graph data G(t) while maintaining the 
performance and avoiding the catastrophic forgetting for T(1), T(2), … ,T(t-1)  

Graph Lifelong learning: survey



- No consensus on the best method for explainability /continual 
learning

- Not enough guidance to make a contextual educated choice based 
on the advantages and weaknesses of existing methods

- We are creating a survey/library based on extensive 
experimentation to address these drawbacks

- Apply existing methods and our contributions to real-world 
streaming data (e.g. automotive)

Conclusion



Continual learning



- most contributions on explainability study static graphs
- only a few dedicated methods for temporal graphs

- xRTE, RetaGNN, TLogic
- based on attention
- don't evaluate the explainability per se

-

Context

https://arxiv.org/pdf/2012.15537v5.pdf
https://arxiv.org/pdf/2101.12457v1.pdf
https://arxiv.org/pdf/2112.08025v2.pdf


- temporal graph data (e.g. traffic flow) consists of intricate spatial-temporal 
correlations which are ignored by static models

- the objective is to mine new patterns while consolidating historical knowledge 
(avoiding catastrophic forgetting)

- when a new task is similar to a previous one, improve the existing model; when a 
new task is different, transfer knowledge to address it and thus be able to handle 
new undefined tasks

Context



Strategies to deal with new tasks/data

Approach Description

Joint training Train arbitrarily on old + new data
→ High computational cost

Online learning Train on new data 
→ Catastrophic forgetting

Continual learning Consolidate existing information and 
capture new patterns

Catastrophic forgetting

Historical 
data New data+


