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Abstract—The topic of explainable AI has recently received
attention driven by a growing awareness of the need for
transparent and accountable AIL. In this paper, we focus on
local perturbation-based explanation methods, which currently
represent a majority of the post-hoc explainability literature and
usage. We have observed a fundamental commonality among
these methods, forming the essence of our contribution. We
propose a novel methodology to decompose any state-of-the-art
perturbation-based explainability approach into four blocks. This
decomposition framework offers a concise analysis of existing
similarities between methods and accelerates the development of
new ones and their variants by promoting the reuse of their
common blocks. In addition, we provide Muppet: an open-
source Python library that offers (i) explainable AI methods to
debug and interpret ML models, (ii) standardized API based
on our decomposition methodology, facilitating contribution and
benchmarking, and (iii) built-in modularity design: enables the
decomposition of every method into reusable modules, thus
speeding up their implementation. Available at https://github.
com/euranova/muppet/.

Index Terms—explainable Al, perturbation-based methods,
multi-modal.

I. INTRODUCTION

Artificial Intelligence (AI) has revolutionized many do-
mains. However, this power comes with a challenge: shifting
from simple interpretable models to complex but powerful
ones such as Deep Neural Networks (DNNs). As a result, their
lack of transparency limits their real-world use in high-stakes
domains, such as healthcare, criminal justice, and finance [1].

This growing awareness of the need for accountable and
transparent Al systems, promoted by regulatory movements
like the GDPR, and the converging Al Act, emphasizes
the importance of responsible Al practices, and the right to
meaningful explanations for Al-driven decisions.

In response to these concerns, the field of explainable Al
(XAI) has gained prominence [2] to allow Al to resonate
with human comprehension for developers and end users. This
field follows two distinct approaches. The first is to build
inherently interpretable ML models [3]. The second is to
employ post-hoc XAI methods to explain the predictions of
existing ML models, regardless of their complexity. The latter
has gained popularity, with numerous methods proposed in the
literature, as in [4]-[6]. These methods can provide insights
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Fig. 1: Illustration of the Muppet decomposition of a
perturbation-based explanation method, namely RISE [10]. It
follows four steps: 1) Exploration It takes an input image x and
generates masks M;, 2) Perturbation pixels of x highlighted in
blue in M; are perturbed to get x}, 3) Astribution calculates the
perturbations’ contribution as cat predicted class by feq: (),
then 4) Aggregation which compiles the perturbations’ impacts
using weighted sum of masks by prediction scores to form a
saliency map S(x).

for one prediction at a time (local explanations) or for the
model’s global behaviour (global explanations). Notably, most
post-hoc approaches are local and model-agnostic; meaning
they offer per-sample explanations without relying on the
model’s architecture, which makes them applicable to most
ML models.

Perturbation-based approaches represent a substantial por-
tion of the post-hoc family of methods. Simply put, they
involve altering the input of a model, such as masking part
of an image or substituting words in a sentence, to observe
the model’s behavior on them, e.g. changes in the model’s
output. Several methods have been proposed in the literature
for images [5], [7]-[9], and have been expanded to other data
types, such as to explain time-series. The popularity of this
perturbation-based approach lies in its intuitiveness, making it
one of the promising approaches in XAI

Based on our observation that the perturbation-based family
of methods share common similarities in the process of gen-
erating explanations, we propose a novel methodology to de-
compose any perturbation-based explainability approach into
four components. This decomposition serves several purposes.
First, it allows a concise and easy analysis of the similarities
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between perturbation-based methods, allowing their unifica-
tion into a common framework of thought; this is done by
examining their constitutive components, rather than the meth-
ods as a single unit. Second, it facilitates ablation studies and,
more broadly, comparisons of variants and modifications of
certain components. This allows users to recommend specific
explainability methods for specific use cases based on the
methods’ components. Finally, the decomposition framework
fosters the implementation of perturbation-based methods and
their benchmarking by allowing the isolation of the effect of
individual components.

For practical use of the proposed methodology, we also
propose an open-source Python library for explaining ML
models Muppet!: Multiple Perturbations. The library has
been developed in a modular design to take advantage of the
methods’ decomposition. Every method is composed of four
blocks (modules), which makes it easy to reuse them in the
implementation of other methods. The library offers several
functionalities for data scientists to debug and explain their
ML models by applying ready-to-use XAI methods alongside
their evaluation metrics. It also allows the XAI research
community to contribute to an open-source project based on
a standardized API, transparent code, and easy implementa-
tion of new decomposable methods. The latter aspects allow
contributors to speed up the code implementation of their
new methods, thanks to the theoretical decomposition and
modular design of the library. Furthermore, the library offers
benchmarking capabilities for researchers to compare their
methods against available ones; facilitating the experimental
part of their research.

Outline of paper. The next section II presents work re-
lated to perturbation-based explainability methods and existing
XA libraries. Section III details our proposed decomposition
framework, as well as the associated Python library Muppet.
Section I'V highlights examples of the results of our benchmark
tool to compare several explainers. Section V concludes by
highlighting our main contributions and discussing directions
for future work.

II. RELATED WORK

Perturbation-based explainable AI (PXAI): In post-hoc
settings, where models are already trained, feature attribution
methods generate the importance score of every input feature,
which quantifies how much the model relies on the feature
to provide its decision [2]. These methods are commonly
classified into two main categories [11]. First, model-specific
approaches exploit the model’s intrinsic characteristics. These
include heuristic propagation mechanisms [12] and gradient-
based methods [4], [13]. Second, model-agnostic approaches
treat the model as a black box and hence apply to any
model regardless of its complexity. Most of the proposed
post-hoc methods in the literature are based on the concept
of perturbing input data [5], [14]. These perturbation-based
approaches generate perturbations (with altered features) of
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the original input and estimate feature importances based on
the impact of the perturbation on the model’s behavior. To
exemplify, in the case of image classification, considerable
changes induced by perturbing specific pixels in the input
image would lead the classifier to assign the perturbed image
to a different class than previously predicted.

In this work, we focus on the family of perturbation-
based methods which represent the vast majority of post-hoc
methods in the literature. In our framework, we encompass
any explanation method that involves data perturbation. For
instance, LIME [15] and SHAP [16] methods align seamlessly
with our approach. The first generates perturbed inputs around
the sample to explain to train a local proxy model, while the
second perturbs the sample’s features to generate subsets of
feature combinations and their values (collisions).

Commonalities of PXAI methods: We have observed that
PXAI methods share a common pattern to derive explanations.
This observation aligns closely with a theoretical unification
of feature-removal explanation methods proposed in [17].
They defined every method by three mapping functions cor-
responding to 1) how the method removes features, 2) which
model behaviour the method explains, and 3) how the method
summarizes the influence of each feature.

In our constructive framework, these would correspond
respectively to the Perturbation, Attribution, and Aggregation
steps. However, this previous work does not address the ques-
tion of how to determine which feature should be perturbed,
which is an essential step in every PXAI method. In practice,
PXAI methods explore the input space in the neighbourhood
of the input to be explained. It can be done by building masks
that are used to define the regions of the input to be perturbed.
We can cite two possible strategies: randomly sampling masks
[10], [15] or building masks using an iterative optimization
approach [7], [18].

In our decomposition, this critical aspect is assigned to
the Exploration step which determines how each mask is
generated. It is capital to include this Exploration step in any
decomposition, as it represents one of the XAI challenges
regarding data modalities. Without the Exploration concept,
the mapping proposed in [17] cannot clarify the problem of
how to pass information from each step of the explanation
to the next. The Exploration stage also enables us to suitably
address the challenge of handling different modalities (tabular,
image, timeseries...) since each modality can be explored
differently. Moreover, this decomposition is implemented in a
Python library enabling a constructive composition of existing
approaches and components, which makes it an important
contribution of our work.

Explainability libraries: Numerous XAI methods have
been proposed in the literature for various data modalities
and tasks. However, they often lack a clean and open-source
implementation, which limits their accessibility and usage. To
answer this challenge, several libraries have emerged, serving
as repositories for XAI methods. Based on their GitHub
usage statistics, the top contenders are Captum [19], Al
Explainability 360 (AIX360) [20], [21], and OmniXAI [22].
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The goal of these libraries is to make as many XAI methods
available as possible. However, based on our observation, none
addresses the issues of code redundancy or implementation
simplicity. Integrating a new method into the existing libraries
necessitates a complete and non-reusable implementation, even
for methods closely related to each other. This arises from not
taking advantage of the inherent similarity among XAI meth-
ods and the absence of adopting a modular design that fosters
the re-usability of modules across various implementations.
In response to both challenges, we introduce Muppet, an
open-source Python framework designed with modularity in
mind for PXAI methods. By decomposing each method into
reusable components, Muppet streamlines the development of
new techniques and their extensions. It offers a standardized
API based on the theoretical decomposition, clean and trans-
parent code alongside benchmarking capabilities. Muppet ’s
objective is to bridge the gap between research and usability
in XAl by fostering efficiency, simplicity, and reproducibility.

III. MUPPET : MULTIPLE PERTURBATIONS
A. Theoretical decomposition

In this section, we present our methodology for decom-
posing PXAI methods. We observed that the PXAI tech-
niques follow the same process for generating explanations
for different data types and modeling tasks. This process is
mainly based on the concept of perturbing (modifying) the
original data and observing the model’s behaviour on those
perturbed points. The applied perturbations alter the input
features (from changing pixel values in an image to altering
words in a text for NLP tasks) to assess their importance by
measuring their impact on the model’s prediction power. The
features for which the model’s behaviour stays the same when
perturbed (e.g. the prediction doesn’t change) are considered
not important, and vice versa. For example, as shown in Figure
1, the input image is perturbed using random masks, in order
to observe the class prediction made by the model under
consideration. In this example, the final explanation is in the
form of a saliency map which shows important pixels with
respect to the model in red; meaning those pixels are essential
for the model to predict the correct class (cat) of the original
input image.

Our observation leads us to break down the process of
PXAI methods into four steps, each one answering a specific
question. The first step is the Exploration, which determines
how to navigate the space of possible perturbations, where a
perturbation is defined by a mask covering the elements to be
perturbed of the original data. As this space is extremely large,
an exhaustive exploration of all possible masks is generally not
feasible. The objective at this stage is to identify the process
by which these masks are generated in order to be diverse and
useful, depending on the original data modality.

The second step is Perturbation, which defines the process
of modifying the original data using the masks generated in
the first step, where the features covered by the masks are
perturbed and only them. In this step, the actual perturbed
data are created. In the Figure 1 example, a simple pixel-wise

multiplication between the mask and the input image is used to
create the perturbed images. This is a common way to create
perturbations, but in other tasks and for other data types, this
step might require more sophisticated ways to perturb the data.

The third step is Attribution, which gives the perturbation
a value based on an evaluation of the differences in the be-
haviour of the model when presented with either the perturbed
or the original data. Depending on the modeling task and the
data modality for the considered explanation method, different
strategies could be used. The perturbation value represents
the contribution of the applied perturbation in explaining the
model’s prediction. In the previous example, in Figure 1, the
model’s behaviour is based on its output ; more precisely,
the perturbation’s contribution is simply based on the model’s
logit output for the cat class f..:(x') when given as input the
perturbed image. This captures how the model behaves under
different perturbations.

The final step is Aggregation, which decides how to con-
solidate the contributions of each assessed perturbation into
a coherent final explanation. As several perturbations are
applied, we need to define a way to combine the contribution
of every perturbation, calculated in the previous step, in the
required form of the final explanation. In the example Figure
1, the final explanation is in the form of a saliency map
consolidated from the weighted sum of all perturbation masks
multiplied by the predicted class probability of each one. The
final explanation’s form depends on the data modality and the
nature of the explanation method.

It is worth mentioning perturbation-based methods are very
diverse, and can use different processes than the presented
example in Figure 1. For instance, gradient-optimization-
based methods search for a minimal perturbation mask that
maximally affects the model’s output by optimizing a well-
defined objective function. In this case, the explanation process
follows an iterative strategy to optimize the mask, which
results in a different pattern than the one shown in 1. Although
the approach is different, it still decomposes easily into our
framework: an example of this case is the Meaningful Pertur-
bation method [7] as decomposed in appendix A.

In what follows, we define precisely the mathematical
definition of each step presented previously. Let us consider
a machine learning model f, which takes an input xz € RP
and produces an output y = f(z). Here, x represents the D
multi-dimensional input vector. Additionally, we define masks
M € [0,1]P which define whether a feature of x should be
perturbed or preserved. Using these notations, PXAI methods
always conform to the use of the following steps:

« Exploration (£): Exploring the space of possible per-
turbations. This iterative process generates the masks
M € [0;1]P. This step can be represented as follows:

5:k‘—>Mk

where M, is the set of masks generated at step k.
o Perturbation (P): Once the masks are defined, they are
taken to indicate which parts of the input data x should



be modified by the perturbation function P. This function
is defined as:

2’ =P(x,M) € RP

where 2’ is the perturbed version of x. This follows
x% = xz where M7z = 0 and Z is a multidimensional
index. In plainer terms, this means that elements whose
corresponding value in the mask is O should not be
perturbed, while a perturbation will be applied to those
whose corresponding value is nonzero.

o Attribution (A): This step gives a score to each mask
via the perturbed inputs it entails. The score is based on
the model’s behavior towards the perturbed input, and can
also include the impact of the masked perturbation on the
data itself. This is represented as:

A = A(f, 2z, M)

where A); gives the contribution to the explanation from
the mask M.

o Aggregation (G): The final step involves aggregating the
individual attributions obtained from every perturbation
(Ajps) to derive the final explanation. This step is ex-
pressed as:

S =G(f, {(Ar, M)|3k e N, M € My})

where S is the final explanation.

The systematic decomposition of PXAI methods into these
four steps/components highlights the commonalities between
them, such as when several PXAI methods share similar
steps of the explanation process. This helps group similar
methods, but also facilitates their code implementations by
conducting the specific instantiation of their components for
the considered methods.

B. Example of LIME’s decomposition

Let us now detail the concrete example of the LIME-
Image [15] algorithm and its decomposition in the Muppet
framework.

« Exploration: LIME’s exploration strategy is split into
two main stages: first the computation of a superpixel
segmentation of the image, then masks are built as
the association of a fixed number of uniformly drawn
superpixels from the first stage.

o Perturbation: This step is an occlusion operation defined
as:

.I‘I:'P]y[ask(l',M):.’L‘Q(l—M)-l—O@M

where every pixel in the drawn superpixels is set to black.

o Attribution: At this step, each perturbed input z’ is
passed through the model, and the output is collected.
The LIME approach also adds a weight depending on
the distance to the original example: A(f,z,2', M) =
(f(2"),D(z,z')) where D is the Radial Basis Function
kernel distance.

o Aggregator: Conceptually, the previous steps allow the
construction of a synthetic and locally-weighted dataset.
Then LIME fits an inherently interpretable local model
learned from the explored dataset: a LASSO model h is
fit on the synthetic dataset to approximate locally f. The
returned saliency S is the sum of all superpixels, each
weighted by the learned coefficients of h.

Other decomposition examples for other explanation meth-
ods are summarized in Table I and detailed in Appendix A.

C. Implementation

Alongside the proposed theoretical decomposition of PXAI
methods, we introduce Muppet (MUItiPle PErTurbations): an
open-source Python framework that provides PXAI methods
developed in a modular design. The implementation of every
method in Muppet contains four modules, namely: Explorer,
Perturbator, Attributor, and Aggregator, where every one
corresponds to the decomposition steps. Muppet’s strength lies
in its ability to highlight the intersections among these modules
in various PXAI methods.

By implementing every method in modular blocks, it fosters
a collaborative environment where components can be shared
and reused between different methods. As a result, Muppet fa-
cilitates the development and implementation of new methods
and variations, as compositions of existing components, in few
lines of code by the end user. In Table I we present some com-
ponents’ implementations within Muppet, showcasing their re-
usability by different methods. Special efforts have been made
to test the reproducibility of existing methods implemented
in Muppet. When possible, we compared the results given
by our implementation of a given method with the reference
implementation provided by the original authors, to ensure the
results of both implementations match.

D. Example of a variant method creation in Muppet

As an illustrative example of the practicality and modu-
larity of Muppet through its decomposition framework, let
us consider the implementation of RISE [10] and RELAX
[26] in Muppet. These are two distinct perturbation-based
methods used for explaining image classification and image
embeddings, respectively. We show how the latter can be easily
implemented as a variant of the former.

When RISE [10] and RELAX [26] are decomposed fol-
lowing our proposed methodology, it becomes intuitive to
find the shared commonalities between these two methods.
They differ only for the modelling task and what to capture
from the model behaviour when presented with perturbed data.
Indeed, RISE and RELAX share three components, namely:
their Explorer, Perturbator, and Aggregator, and only differ for
the Attributor module when generating explanations: RELAX
calculates a metric based on an output vector (the embedding),
while RISE calculates its metric based on a single scalar
(the class probability of the original example). Therefore, a
RELAX implementation requires only the development of one



| Method / Component | Explorer | Perturbator | Attributor | Aggregator |
RISE [10] Random Grid Mask Divergence (Class Score) Weighted Sum
MP [7] Optimizer Blur Loss | Optimized Saliency
FIT [23] Indexer Generator Divergence (KL) Sampling Mean
SESS [24] Patch Grid | Crop + Resize Partial Saliency Saliencies Fusion
ScoreCam [25] Feature Map Blur Divergence (Class Score) Weighted Sum
OptiCam [18] Optimizer Blur Loss | Optimized Saliency
RELAX [26] Random Grid Mask Divergence (Cosine) Weighted Sum
LIME image [15] Segmentation Mask Preds + Weights (RBF) Local model
KernelSHAP [27] Segmentation Mask | Preds + Weights (Shapley) Local model

TABLE I: This table presents a concise summary of each of the considered PXAI methods and highlights

their intersections

thanks to the decomposition. The meaning of the various components is described in Appendix A

component, a new Attributor, and reuses all three others from
RISE’s implementation.

The presented example serves as a demonstration of how
effortlessly new methods and variants can be developed in
Muppet by assembling distinct but compatible modules tai-
lored for each step in the explanation process. This consis-
tency in components allows Muppet to accommodate various
methods while maintaining a consistent modular structure.
This flexibility not only streamlines the development process
but also encourages innovation by allowing researchers to
experiment with different combinations of modules to create
new XAI methods. We refer the reader to detailed definitions
of the methods’ components provided in Appendix A.

E. Benchmarking capabilities

Being able to quickly develop new methods and variants is
but one piece of the puzzle. Once new explainers are devel-
oped, it is important to be able to evaluate their performance
quickly, especially compared to other methods and perhaps
even the methods from which the new explainers were derived.

To that end, Muppet incorporates a benchmarking solution.
Provided a method is implemented as a Muppet Explainer
object, it enables the computation of a variety of metrics on
several standard datasets and models for different modalities
(text, image, time series). We rely on the Quantus [28] library
to compute these evaluation metrics.

This benchmarking module was used in the experiments
presented in section IV.

IV. EXPERIMENTS

This section describes the experiments our benchmarking
tool developed within the Muppet framework. The goal of
these experiments is to illustrate the capabilities of the Muppet
library, both in terms of benchmarking and ease of develop-
ment of new variants.

A. Experimental Protocol

Experiments were conducted on three data modalities:

o Tabular data: using the dataset Dry beans. [29]. We
trained a XGboost model on a train set and compute
various metrics on the test set.

o Image data: using a subsample of the ImageNet dataset
[30]. The evaluation is conducted using the ResNet pre-
trained model.

o Time series data: multi-channel synthetic spike time se-
ries from [23]. A GRU classifier has been trained and
we computed explanations using FIT [23] and various
configurations of RISE easily adapted to time series. The
explanations are then evaluated using our benchmark tool.

For tabular data, we compare the KernelSHAP and LIME
explainers, incorporating both Ridge and Lasso regularizations
in the surrogate model. This experiment shows how to quickly
gain insight by comparing variants.

For image data, we compare several methods which have
some building blocks in common : RISE, MP, OptiCAM, and
ScoreCAM. This experiment allows us to deduce the relative
effects of such building blocks.

For time series data, we compare the FIT method [23] to
variants of RISE adapted to time series. For those variants of
RISE the upsampling is applied only on the time dimension.

For both data types, we evaluate the performance of the
explainers in different aspects thanks to the benchmark ca-
pabilities proposed by Muppet. It relies on the explanation
evaluation metrics implemented by the Quantus library [28]
which categorize them into the following concepts.

Faithfulness This criterion evaluates how accurately the
explanations reflect the model’s predictions.

e We employ the Faithfulness Correlation metric [31],
which shows to what extent the predicted logits of each
perturbed sample and the average explanation attribution
for a subset of features are (linearly) correlated.

o the Faithfulness estimate [32] computes the correlation
between probability drops and attribution scores on var-
ious points

« the Monotonicity metric [20] tests if adding more positive
evidence increases the probability of classification in the
specified class.

o For images we also used the IROF metric [33] that
computes the area over the curve per class for sorted
mean importances of feature segments (superpixels) as
they are iteratively removed (and prediction scores are
collected)

Robustness This criterion assesses the stability of explana-
tions under slight variations in input. No robustness metric has
been added to the proposed experiment examples.

Randomisation This criterion evaluates how explanations
degrade as the randomness increases in the data or the model.



We employ the Random Logit metric [34], which computes the
distance between the original explanation and the explanation
for a randomly chosen alternative class.

Complexity This criterion measures the conciseness of
explanations. We use the Complexity metric [31], defined as
the entropy of the fractional contribution of a feature to the
total magnitude of the attribution, and the Sparseness [35]
which relies on the Gini index to quantify whether only highly
attributed features are truly predictive of the model output.

The list of metrics is not exhaustive and can be adapted to
the needs of the user.

B. Results and analysis

1) Tabular: Results are presented in Figure 3. For each
algorithm, namely SHAP and LIME, the results indicate that
the performance of the Ridge and Lasso variants within the
same algorithm is slightly different but broadly comparable
for both.

LIME is surprisingly almost unaffected by the choice of
regularization. For SHAP, the answer is more complicated. The
original KernelSHAP paper [27], which is the implementation
on which we base ours, opts for a Lasso regression, but
also states that the regularization term should be zero. In
our results, it is possible to quickly see that the choice of
regularization can have an impact: switching Lasso to Ridge
degrades the performance on all metrics. This suggests that
the choice of Lasso in the original paper was motivated by
its good sparsity properties that greatly improve the human
readability of the explanation, with little to no impact on the
faithfulness metrics.

2) Image data: Results are presented in Figure 2. Here,
these results highlight potential trade-offs. The more recent
OptiCAM variation has a similar Monotonicity and Faithful-
ness, but a better RandomLogit compared to its predecessor
ScoreCAM, at the cost of worse sparsity. But the crucial
point is that OptiCAM is an optimisation-based method that
shares many building blocks with Meaningful Perturbation,
whose own results are considerably worse. Yet, OptiCAM
is able to achieve results that are closer to the best method
in our benchmark, namely ScoreCAM, but with the same
(lower) computing cost as Meaningful Perturbation (MP).
Moreover, OptiCAM resolves the robustness problem of MP
by constraining the optimization to a combination of the
feature maps. Furthermore, we can also see that the RISE
method still holds up surprisingly well, though this comes at
a heavy computational cost.

3) Time series: Results are presented in Figure 4. Inter-
estingly, it can be observed that the same approach obtains
significantly different results depending on its configurations.
This encourages limiting the number of parameters in an
explainer, or emphasizes the need for efficient parameter-
choosing heuristics when developing new explainers. The
graph also indicates that the FIT explainer, as a method
specifically designed to handle time series, displays signifi-
cant improvements in terms of Faithfulness and Complexity
compared to the ad-hoc RISE variants.
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Fig. 2: Image benchmark results display the distribution for
various metrics for five image classification model explainers:
MP, RISE, OptiCAM, ScoreCAM, LIME Image.
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Fig. 3: Tabular benchmark on Random Forest model trained on
the Dry Beans dataset. The Results display the distribution for
various metrics for two set of explainers variants: LIME [15]
and Kernel SHAP [27], with surrogate model without regres-
sion, with Ridge regularization or Lasso Regularization.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel methodology to de-
compose any state-of-the-art perturbation-based explainability
(PXAI) approach into four components. This decomposition
framework is based on the observation that PXAI meth-
ods share the same pattern in generating explanations. We
decompose any method into the Exploration, Perturbation,
Attribution, and Aggregation steps. Our framework allows for
a concise analysis of similarities between methods, which
leads to their unification and promotes the re-usability of the
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Fig. 4: Timeseries benchmark compares the FIT method [23]
to 4 different configurations of RISE adapted to time series.
Two main parameters have been modified: the grid size,
and the perturbation probability, both parameters hold by the
explorer component of RISE.

decomposed components among different methods. Further-
more, we introduce Muppet, an open-source Python library
for explaining and debugging ML models. The library is
developed in a modular design based on the decomposition
framework. Muppet provides end-users with tools to interpret
and debug machine learning models, and streamlines the
extension of existing methods and the development of new
ones: the modular design of Muppet allows the reuse of
method components, which makes it easy for users to discover
new XAI methods, expands upon existing ones, and speed up
implementations while reducing code redundancy. Muppet’s
benchmarking capabilities, focusing on reproducibility, allow
easy comparison between different XAl methods and their
variants.

At the time of writing, our framework implements nine
approaches from the literature of XAI using multiple shared
components. Although significant groundwork has been laid
to validate the current decomposition theory, further efforts
will be dedicated to implementing more XAI techniques and
examining alternative exploration strategies and ML tasks such
as image segmentation or dense prediction tasks. Additionally,
other responsible Al tools draw on data perturbation, such as
counterfactual explanations, or analysis of model guarantees
including robustness and stability. Following this observation,
we plan to broaden our framework beyond simply feature-
importance-based XAI methods.
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APPENDIX

In addition to the decompositions of some explanation
methods summarize in Table I, we detailed here the definition
of the components on which the decomposition relies.

« Explorer: Exploring the space of possible perturbation.

— Random Grid: The random grid explorer draws a
set of small multidimensional vectors filled with
Bernoulli variables, which are then up-sampled with
interpolation: VM € M gandom, M = U(G) where
Gz ~ Bernoulli(p)

— Optimizer: This explorer produces masks that are
the iterates of the optimization of a given objective
function, relying usually on the model output regular-
ized on characteristics of the mask iterates M?. For
example, MP [7] uses the total variation to regularize
the objective function.

— Indexer: Mgz =
{1z,,17,,...,17, }, where every 17, is a vector
full of 0 except at multidimensional index Z;.

— Patch Grid: Mpaien = {Pi,..., Py} which are
scaled sliding windows on the input.

— Feature Map: This explorer uses upsampled versions
of the feature maps from the last convolutional layer
() of f: Mreaturemap = {U(fL(z))|Vi € [1..C1]}

— Segmentation: Some Explorers may rely on other
algorithms to segment the input data, such as su-
perpixel segmentation for images.

o Perturbator: Perturbing using pure functions that take as
input the original model input and a mask
- Mask: Parask(z, M) =2 (1—M)+z© M, where
©® is the element-wise multiplication, and Z can be
any constant reference vector of the size of x.

- Blur: Ppiyr(z, M) =20 (1-M)+2zx KoM
where * is the convolution operation between = and
the Gaussian kernel K.

— Crop and Resize: Crop the input according to the
mask and resize it to the original input size.

- Generator: Pgenerator(@, M) = 2 ® (1 — M) +
Gy © M where the values of G, are sampled from
a generative model G.

o Attributor: Extract information from the model’s behav-

ior on the perturbed input.

— Divergence: A similarity measure capturing the de-
viation of the model’s output when presented to
the perturbed input. For example, A(f,z,z’, M) =
f(z) — f(2') the predicted class score on the per-
turbed inputs in RISE [10], or the KL divergence
in FIT [23], or Cosine Similarity based in RELAX
[26].

— Loss: A(f,x,2’',M) = Loss(J(M, f,a’,x)) cap-
tures the loss of an objective function J which can
be used by optimization based explorers.

— Partial Saliency: Tt calculates A(f,z',z,M) =
Sxar(f,x') a partial saliency map using any chosen
XAI method Sx 47, as well as the class score.

— Weight and predict: Some approaches attribute to
each candidate perturbation a weight based on its
similarity to the base input, as well as the model’s
output for the perturbed input. For example, LIME
[15] uses Radial Basis Function (RBF) similarity and
KernelSHAP [16] a weighting based on estimated
Shapley values.

o Aggregator: Consolidate the contributions from each

attributed perturbation into a final explanation.

— Weighted Sum: This aggregator computes the
weighted mean of the explored masks & =
> aieam Anr X M, using the attribution as weights.

- Sampling Mean: S =3 yrc (& 25:1 A x M
where NN is the number of sampled perturbed inputs
generated for a mask M € M in a Monte Carlo
approach.

— Optimized Saliency: For the optimization-based pro-
cedure, the final saliency is often the last iterate of
the optimization algorithm: S = M?.

— Saliencies Fusion: It calculates the weighted and
localized average of the saliency attributions: S =
Y oviem f(@hy) X Sxar(zhy,) where 2y, is the per-
turbed images for mask M.

— Local Model: Methods such as LIME [15] or SHAP
[16] learn a local and explainable model based on
the synthetic weighted dataset composed of the per-
turbations and their corresponding attributed weights
and model outputs. The explanation of this surrogate
local model serves as an explanation for the input
prediction.
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