Skip to content

Governance issues on heavy models in an industrial context

SWIFT is a member-owned cooperative providing secure messaging capabilities to the financial services industry. One critical mission of SWIFT is the standardization of the message flows between the industry players. The model-driven approach naturally came as a solution to the management of these message definitions. However, one of the most important challenges that SWIFT has been facing is the global governance of the message repository and the management of each element. Nowadays modeling tools exist but none of them enables the management of the complete life-cycle of the message models. In this paper wepresent the challenges that SWIFT had to face in the development of a dedicated platform.

 

Sabri Skhiri, Marc Delbaere, Yves Bontemps, Grégoire de Hemptinne, and Nam-Luc Tran, Governance issues on heavy models in an industrial context. Advances in Conceptual Modeling. Recent Developments and New Directions ER 2011, Brussels, Belgium, November 2011.

Click here to access the paper.

Releated Posts

Investigating a Feature Unlearning Bias Mitigation Technique for Cancer-type Bias in AutoPet Dataset

We proposed a feature unlearning technique to reduce cancer-type bias, which improved segmentation accuracy while promoting fairness across sub-groups, even with limited data.
Read More

Muppet: A Modular and Constructive Decomposition for Perturbation-based Explanation Methods

The topic of explainable AI has recently received attention driven by a growing awareness of the need for transparent and accountable AI. In this paper, we propose a novel methodology to decompose any state-of-the-art perturbation-based explainability approach into four blocks. In addition, we provide Muppet: an open-source Python library for explainable AI.
Read More