Skip to content

Towards trust inference from bipartite social networks

The emergence of trust as a key link between users in social networks has provided an effective means of enhancing the personalization of online user content. However, the availability of such trust information remains a challenge to the algorithms that use it, as the majority of social networks do not provide a means of explicit trust feedback. This paper presents an investigation into the inference of trust relations between actor pairs of a social network, based solely on the structural information of the bipartite graph typical of most on-line social networks. Using intuition inspired from real life observations, we argue that the popularity of an item in a social graph is inversely related to the level of trust between actor pairs who have rated it. From an existing bipartite social graph, this method computes a new social graph, linking actors together by means of symmetric weighted trust relations. Through a set of experiments performed on a real social network dataset, our method produces statistically significant results, showing strong trust prediction accuracy.

Daire O’Doherty, Salim Jouili, and Peter Van Roy, Towards trust inference in bipartite social networks, proceedings of the 2d ACM SIGMOD Workshop on Databases and Social Networks, DBSocial 2012, Scottsdale, USA, ACM, June 2012.

Click here to access the paper.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More