Skip to content

Towards trust inference from bipartite social networks

The emergence of trust as a key link between users in social networks has provided an effective means of enhancing the personalization of online user content. However, the availability of such trust information remains a challenge to the algorithms that use it, as the majority of social networks do not provide a means of explicit trust feedback. This paper presents an investigation into the inference of trust relations between actor pairs of a social network, based solely on the structural information of the bipartite graph typical of most on-line social networks. Using intuition inspired from real life observations, we argue that the popularity of an item in a social graph is inversely related to the level of trust between actor pairs who have rated it. From an existing bipartite social graph, this method computes a new social graph, linking actors together by means of symmetric weighted trust relations. Through a set of experiments performed on a real social network dataset, our method produces statistically significant results, showing strong trust prediction accuracy.

Daire O’Doherty, Salim Jouili, and Peter Van Roy, Towards trust inference in bipartite social networks, proceedings of the 2d ACM SIGMOD Workshop on Databases and Social Networks, DBSocial 2012, Scottsdale, USA, ACM, June 2012.

Click here to access the paper.

Releated Posts

Insights from GTC Paris 2025

Among the NVIDIA GTC Paris crowd was our CTO Sabri Skhiri, and from quantum computing breakthroughs to the full-stack AI advancements powering industrial digital twins and robotics, there is a lot to share! Explore with Sabri GTC 2025 trends, keynotes, and what it means for businesses looking to innovate.
Read More

Development & Evaluation of Automated Tumour Monitoring by Image Registration Based on 3D (PET/CT) Images

Tumor tracking in PET/CT is essential for monitoring cancer progression and guiding treatment strategies. Traditionally, nuclear physicians manually track tumors, focusing on the five largest ones (PERCIST criteria), which is both time-consuming and imprecise. Automated tumor tracking can allow matching of the numerous metastatic lesions across scans, enhancing tumor change monitoring.
Read More