Skip to content

Trust-based recommendation: an empirical analysis

The use of trust in recommender systems has been shown to improve the accuracy of rating predictions, especially in the case where a user’s rating significantly differs from the average. Different techniques have been used to incorporate trust into recommender systems, each showing encouraging results. However, the lack of trust information available in public datasets has limited the empirical analysis of these techniques and trust-based recommendation in general, with most analysis limited a single dataset.

In this paper, we provide a more complete empirical analysis of trust-based recommendation. By making use of a method that infers trust between users in a social graph, we are able to apply trust-based recommendation techniques to three separate datasets. From this, we measure the overall accuracy of each technique in terms of the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) as well as measuring the prediction coverage of each technique. We thus provide a comparison and analysis of each technique on all three datasets.

Daire O’Doherty, Salim Jouili, and Peter Van Roy, Trust-based recommendation: an empirical analysis, proceedings of the 6th ACM SIGKDD Workshop on Social Network Mining and Analysis SNA-KDD, Beijing, China, ACM, July 2012.

Click here to access the paper.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More