Skip to content

Trust-based recommendation: an empirical analysis

The use of trust in recommender systems has been shown to improve the accuracy of rating predictions, especially in the case where a user’s rating significantly differs from the average. Different techniques have been used to incorporate trust into recommender systems, each showing encouraging results. However, the lack of trust information available in public datasets has limited the empirical analysis of these techniques and trust-based recommendation in general, with most analysis limited a single dataset.

In this paper, we provide a more complete empirical analysis of trust-based recommendation. By making use of a method that infers trust between users in a social graph, we are able to apply trust-based recommendation techniques to three separate datasets. From this, we measure the overall accuracy of each technique in terms of the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) as well as measuring the prediction coverage of each technique. We thus provide a comparison and analysis of each technique on all three datasets.

Daire O’Doherty, Salim Jouili, and Peter Van Roy, Trust-based recommendation: an empirical analysis, proceedings of the 6th ACM SIGKDD Workshop on Social Network Mining and Analysis SNA-KDD, Beijing, China, ACM, July 2012.

Click here to access the paper.

Releated Posts

Privacy Enhancing Technologies 2024: A Summary

For Large Language Models (LLMs), Azure confidential computing offers TEEs to protect data integrity throughout various stages of the LLM lifecycle, including prompts, fine-tuning, and inference. This ensures that all
Read More

IEEE Big Data 2023 – A Summary

Our CTO, Sabri Skhiri, recently travelled to Sorrento for IEEE Big Data 2023. In this article, Sabri explores for you the various keynotes and talks that took place during the
Read More