Skip to content

Trust-based recommendation: an empirical analysis

The use of trust in recommender systems has been shown to improve the accuracy of rating predictions, especially in the case where a user’s rating significantly differs from the average. Different techniques have been used to incorporate trust into recommender systems, each showing encouraging results. However, the lack of trust information available in public datasets has limited the empirical analysis of these techniques and trust-based recommendation in general, with most analysis limited a single dataset.

In this paper, we provide a more complete empirical analysis of trust-based recommendation. By making use of a method that infers trust between users in a social graph, we are able to apply trust-based recommendation techniques to three separate datasets. From this, we measure the overall accuracy of each technique in terms of the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) as well as measuring the prediction coverage of each technique. We thus provide a comparison and analysis of each technique on all three datasets.

Daire O’Doherty, Salim Jouili, and Peter Van Roy, Trust-based recommendation: an empirical analysis, proceedings of the 6th ACM SIGKDD Workshop on Social Network Mining and Analysis SNA-KDD, Beijing, China, ACM, July 2012.

Click here to access the paper.

Releated Posts

Calibrate to Interpret

Trustworthy machine learning is driving a large number of the ML community works in order to improve ML acceptance and adoption. In this paper, we show a first link between uncertainty and explainability, by studying the relation between calibration and interpretation.
Read More

Mass Estimation of Planck Galaxy Clusters using Deep Learning

Galaxy cluster masses can be inferred indirectly using measurements from X-ray band, Sunyaev-Zeldovich (SZ) effect signal or optical observations. Unfortunately, all of them are affected by some bias. Alternatively, we provide an independent estimation of the cluster masses from the Planck PSZ2 catalogue of galaxy clusters using a machine-learning method.
Read More