Skip to content

Towards a standards-based cloud service manager

Migrating services to the cloud brings all the benefits of elasticity, scalability and cost-cutting. However, migrating services among different cloud infrastructures or outside of the cloud is not an obvious task. In addition, distributing services among multiple cloud providers, or on a hybrid installation requires a custom implementation effort that must be repeated at each infrastructure change. This situation raises the lock-in problem and discourages cloud adoption. Cloud computing open standards were designed to face this situation and to bring interoperability and portability to cloud environments. However, they target isolated resources, and do not take into account the notion of complete services. In this paper, we introduce an extension to OCCI, a cloud computing open standard, in order to support complete service definition and management automation. We support this proposal with an open-source framework for service management through compliant cloud infrastructures.

Amine Ghrab, Sabri Skhiri, Hervé Kœner, and Guy Ledu, Towards A Standards-Based Cloud Service Manager, proceedings of the 3rd International Conference on Cloud Computing and Services Science, CLOSER 2013, Aachen, Germany, May 2013.

Click here to access the paper.

Releated Posts

Insights from GTC Paris 2025

Among the NVIDIA GTC Paris crowd was our CTO Sabri Skhiri, and from quantum computing breakthroughs to the full-stack AI advancements powering industrial digital twins and robotics, there is a lot to share! Explore with Sabri GTC 2025 trends, keynotes, and what it means for businesses looking to innovate.
Read More

Development & Evaluation of Automated Tumour Monitoring by Image Registration Based on 3D (PET/CT) Images

Tumor tracking in PET/CT is essential for monitoring cancer progression and guiding treatment strategies. Traditionally, nuclear physicians manually track tumors, focusing on the five largest ones (PERCIST criteria), which is both time-consuming and imprecise. Automated tumor tracking can allow matching of the numerous metastatic lesions across scans, enhancing tumor change monitoring.
Read More