Skip to content

An analytics-aware conceptual model for evolving graphs

Graphs are ubiquitous data structures commonly used to represent highly connected data. Many real-world applications, such as social and biological networks, are modeled as graphs. To answer the surge for graph data management, many graph database solutions were developed. These databases are commonly classified as NoSQL graph databases, and they provide better support for graph data management than their relational counterparts. However, each of these databases implement their own operational graph data model, which differ among the products. Further, there is no commonly agreed conceptual model for graph databases.
In this paper, we introduce a novel conceptual model for graph databases. The aim of our model is to provide analysts with a set of simple, welldefined, and adaptable conceptual components to perform rich analysis tasks. These components take into account the evolving aspect of the graph. Our model is analytics-oriented, flexible and incremental, enabling analysis over evolving graph data. The proposed model provides a typing mechanism for the underlying graph, and formally defines the minimal set of data structures and operators needed to analyze the graph.

Amine Ghrab, Sabri Skhiri, Salim Jouili, and Esteban Zimányi, An Analytics-Aware Conceptual Model For Evolving Graphs, proceedings of the 15th International Conference on Data Warehousing and Knowledge Discovery – DaWak 2013, Prague, Czech Republic, August 2013.

Click here to access the paper.

Releated Posts

Calibrate to Interpret

Trustworthy machine learning is driving a large number of the ML community works in order to improve ML acceptance and adoption. In this paper, we show a first link between uncertainty and explainability, by studying the relation between calibration and interpretation.
Read More

Mass Estimation of Planck Galaxy Clusters using Deep Learning

Galaxy cluster masses can be inferred indirectly using measurements from X-ray band, Sunyaev-Zeldovich (SZ) effect signal or optical observations. Unfortunately, all of them are affected by some bias. Alternatively, we provide an independent estimation of the cluster masses from the Planck PSZ2 catalogue of galaxy clusters using a machine-learning method.
Read More