Skip to content

An empirical comparison of graph databases

In recent years, more and more companies provide services that can not be anymore achieved efficiently using relational databases. As such, these companies are forced to use alternative database models such as XML databases, object-oriented databases, document-oriented databases and, more recently graph databases. Graph databases only exist for a few years. Although there have been some comparison attempts, they are mostly focused on certain aspects only.
In this paper, we present a distributed graph database comparison framework and the results we obtained by comparing four important players in the graph databases market: Neo4j, OrientDB, Titan and DEX.

 

Salim Jouili, and Valentin Vansteenberghe, An empirical comparison of graph databases, proceedings of the 2013 ASE/IEEE International Conference on Big Data, Washington D.C., USA, September 2013.

Click here to access the paper.

Releated Posts

Calibrate to Interpret

Trustworthy machine learning is driving a large number of the ML community works in order to improve ML acceptance and adoption. In this paper, we show a first link between uncertainty and explainability, by studying the relation between calibration and interpretation.
Read More

Mass Estimation of Planck Galaxy Clusters using Deep Learning

Galaxy cluster masses can be inferred indirectly using measurements from X-ray band, Sunyaev-Zeldovich (SZ) effect signal or optical observations. Unfortunately, all of them are affected by some bias. Alternatively, we provide an independent estimation of the cluster masses from the Planck PSZ2 catalogue of galaxy clusters using a machine-learning method.
Read More