Skip to content

A distributed approach for graph-oriented multidimensional analysis

The importance of graphs as the fundamental structure underpinning many real world applications is no longer to be proved. Large graphs have emerged in various fields such as biological, social and transportation networks. The sheer volume of these networks poses challenges to traditional techniques for storage and analysis of graph data. In particular, OLAP analysis requires access to large portions of data to extract key information and to feed strategic decision making. OLAP provides multilevel, multiperspective views of the data. Most of the current techniques are optimized for centralized graph processing. A distributed approach providing horizontal scalability is required in order to handle the analysis workload.
In this paper, we focus on applying OLAP analysis on large, distributed graph data. We describe Distributed Graph Cube, our distributed framework for graph-based OLAP cubes computation and aggregation. Experimental results on large, real-world datasets demonstrate that our method significantly outperforms its centralized counterparts. We also evaluate the performance of both Hadoop and Spark for distributed cubes computations.

 

Benoît Denis, Amine Ghrab, and Sabri Skhiri, A Distributed Approach for Graph-Oriented Multidimensional Analysis, proceedings of the 2013 IEEE International Conference on Big Data, Santa Clara, CA, USA, October 2013.

Click here to access the paper.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More