Skip to content

An approach for maximizing performance on heterogeneous clusters of CPU and GPU

Over the past years there has been significant enthusiasm for development of parallel computing on Graphics Processing Units (GPU) which have now become powerful and affordable hardware equipping data centers and research clusters. Our earlier research has explored the ways to exploit the parallel compute performance of the GPU along the CPU in the same cluster. We have proposed a model for processing distributed machine learning tasks leveraging both the CPU and the GPU equipped on the nodes. Still in this direction, we present in this paper our approach for optimizing the performance of the previously proposed framework. We then further present our approach for integrating this processing model into a more general dataflow graph processing framework by extending it with support for GPU tasks and resources. In addition we have developed a k-nearest neighbors implementation demonstrating all the features. We then present our model based on flow networks for the efficient scheduling on this heterogeneous framework.

Nam-Luc Tran, Sabri Skhiri, Arnaud Schils, and Egar Isaac Hiroshi Leon Saiki, An Approach for Maximizing Performance on Heterogeneous Clusters of CPU and GPU. EURA NOVA technical series.

Click here to access the paper.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More