Skip to content

Distributed frank-wolfe under pipelined stale synchronous parallelism

We are witnessing the move towards data center operating systems (OS), where resources are unified and  processing frameworks coexist with each other. In this context it has been shown that an iteration model with relaxed consistency such as the Stale Synchronous Parallel (SSP) model, while still guaranteeing convergence, is able to cope with the straggler problem for converging iterative algorithms. In this poster we present a model for the integration of the SSP model on a pipelined processing framework. We then apply the SSP on a distributed version of the Frank-Wolfe algorithm and empirically show its convergence under stress situations similar to those encountered in a data center OS.

 

Thomas Peel, and Nam-Luc Tran, Distributed Frank-Wolfe under Pipelined Stale Synchronous Parallelism, poster at the Greed is Great ICML’15 Workshop, Lille, France, July 2015

Releated Posts

Calibrate to Interpret

Trustworthy machine learning is driving a large number of the ML community works in order to improve ML acceptance and adoption. In this paper, we show a first link between uncertainty and explainability, by studying the relation between calibration and interpretation.
Read More

Mass Estimation of Planck Galaxy Clusters using Deep Learning

Galaxy cluster masses can be inferred indirectly using measurements from X-ray band, Sunyaev-Zeldovich (SZ) effect signal or optical observations. Unfortunately, all of them are affected by some bias. Alternatively, we provide an independent estimation of the cluster masses from the Planck PSZ2 catalogue of galaxy clusters using a machine-learning method.
Read More