Skip to content

Distributed frank-wolfe under pipelined stale synchronous parallelism

We are witnessing the move towards data center operating systems (OS), where resources are unified and  processing frameworks coexist with each other. In this context it has been shown that an iteration model with relaxed consistency such as the Stale Synchronous Parallel (SSP) model, while still guaranteeing convergence, is able to cope with the straggler problem for converging iterative algorithms. In this poster we present a model for the integration of the SSP model on a pipelined processing framework. We then apply the SSP on a distributed version of the Frank-Wolfe algorithm and empirically show its convergence under stress situations similar to those encountered in a data center OS.

 

Thomas Peel, and Nam-Luc Tran, Distributed Frank-Wolfe under Pipelined Stale Synchronous Parallelism, poster at the Greed is Great ICML’15 Workshop, Lille, France, July 2015

Releated Posts

2022 Wrap Up

We got a deep dive into some of the most memorable moments of 2022.
Read More

IEEE Big Data 2022: the key takeaways

In December 2022, our research director Sabri Skhiri travelled to Osaka to attend IEEE Big Data 2022. He sums up the main trends, and shares his favourite talks and papers.
Read More