Skip to content

Distributed frank-wolfe under pipelined stale synchronous parallelism

We are witnessing the move towards data center operating systems (OS), where resources are unified and  processing frameworks coexist with each other. In this context it has been shown that an iteration model with relaxed consistency such as the Stale Synchronous Parallel (SSP) model, while still guaranteeing convergence, is able to cope with the straggler problem for converging iterative algorithms. In this poster we present a model for the integration of the SSP model on a pipelined processing framework. We then apply the SSP on a distributed version of the Frank-Wolfe algorithm and empirically show its convergence under stress situations similar to those encountered in a data center OS.

 

Thomas Peel, and Nam-Luc Tran, Distributed Frank-Wolfe under Pipelined Stale Synchronous Parallelism, poster at the Greed is Great ICML’15 Workshop, Lille, France, July 2015

Releated Posts

The Building Blocks of a Responsible AI Practice: An Outlook on the Current Landscape

Responsible AI comes with the challenge of implementation. This survey aims to bridge the gap between principles and practice through a study of different approaches taken in the literature and the proposition of a foundational framework.
Read More

TS-Relax : Interprétation des représentations apprises pour les séries temporelles

Les modèles d’apprentissage de représentations sont de plus en plus utilisés, mais des modèles d’IA explicables et de confiance sont nécessaires. Ce travail présente l’adaptation aux séries temporelles d’une méthode d’interprétation de représentation initialement conçue pour les images.
Read More