Skip to content

ENX University in Tunis

On the 9th and 10th of May 2017, the R&D Director of EURA NOVA Sabri Skhiri will lecture on Big Data and Data Science at the Polytechnic School of Tunisia. The course will be hosted by the SERCOM laboratory.

After the launch of EURA NOVA Tunis last September, this course will be a new opportunity for us to bond a little more with Tunisians, especially students. Indeed, EURA NOVA offers programmes in collaboration with universities, such as boot camps, master thesis, research internships and PhDs, and engineering internships. We hope that this lecture will make Polytechnic students want to explore Data Science with us and join the pack!

 

Want to organise a lecture on Big Data and Data Science in your own university? Contact research@euranova.eu and ask for ENX University offer.

 

Here is the detailed programme [in French]

 

Mardi 9 mai 2017: Architecture BIG DATA (partie 1)

Matin (8h30-12h30)

  1. Terminologie et concepts généraux
  2. Architecture distribuée
  3. Stockage du Big Data : NoSQL, NewSQL, Systèmes de fichiers distribués

Pause déjeuner : 12h30-14h

Après-midi : 14h-17h

Travaux pratiques : Préparation de données : Script Pig

    1. Introduction à Pig
    2. Exercice de préparation de données

______________________________________________________

 

Mercredi 10 mai 2017 : Architecture BIG DATA (partie 2)

Matin (8h30-12h30)

  1. Traitement du Big Data : Batch et Streaming
  2. Patrons d’architecture Big Data
  3. Architectures adoptées dans des contextes industriels : Etude de cas

Pause déjeuner : 12h30-14h

Après-midi : 14h-17h

Travaux pratiques sur Apache Spark/Flink

    1. Introduction à Flink et commande Scala de base
    2. Traitement de données en batch et en stream

 

 

 

 

Releated Posts

Calibrate to Interpret

Trustworthy machine learning is driving a large number of the ML community works in order to improve ML acceptance and adoption. In this paper, we show a first link between uncertainty and explainability, by studying the relation between calibration and interpretation.
Read More

Mass Estimation of Planck Galaxy Clusters using Deep Learning

Galaxy cluster masses can be inferred indirectly using measurements from X-ray band, Sunyaev-Zeldovich (SZ) effect signal or optical observations. Unfortunately, all of them are affected by some bias. Alternatively, we provide an independent estimation of the cluster masses from the Planck PSZ2 catalogue of galaxy clusters using a machine-learning method.
Read More