Skip to content

Second Workshop on Real-Time and Stream Analytics in Big Data

EURA NOVA is thrilled to share the news with you: we are organizing our second workshop collocated with the 2017 IEEE International Conference on Big Data. The workshop will take place in December in Boston, MA, USA.

 

Stream processing and real-time analytics have caught the interest of the industry lately. Many use cases are waiting for relevant and efficient solutions to be developed. Such use cases include event-driven marketing, dynamic network management & optimization, real-time recommendation, context-aware applications and real-time fraud detection.

 

After the success of the first edition, this is an excellent opportunity to bring together the industry and academics  to discuss, to explore and to refine new opportunities and use cases in the area. The workshop will benefit  both researchers and practitioners interested in the latest research in real-time and stream processing. The workshop will showcase prototypes and products leveraging big data technologies as well as models, efficient algorithms for scalable complex event processors and context detection engines, or new architecture leveraging stream processing.
Want to submit a paper? Check out the workshop website to find all the information you  will need. Your paper will be reviewed by a prestigious panel of international experts from both the academic and the industrial worlds.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More