Skip to content

Graph BI & Analytics: Current State and Future Challenges

Our paper “Graph BI & Analytics: Current State and Future Challenges” has been accepted for publication at the 20th International Conference on Big Data Analytics and Knowledge Discovery, taking place in Regensburg, Germany.

The paper presents the state of the art of graph BI & analytics, with a focus on graph warehousing. We survey the topics of graph modelling, management, querying, and processing in graph warehouses. Then we conclude by discussing future research directions for solving complex graph problems, building native graph components and intelligent techniques to assist end-users in building and analysing the graph.

More importantly, the paper calls for the development of intelligent, efficient and industry-grade graph data warehousing systems to support the structure-driven management and analytics of data efficiently. While adopting a template that is similar to the traditional BI systems, the graph BI that is presented here extends current systems with graph analytics capabilities that deliver graph-derived insights.

The paper has been presented in September at DaWak 2018, you can now find the full version here. If you wish to go deeper into the subject, don’t hesitate to contact our research department at [email protected].

Abstract. In an increasingly competitive market, making well-informed decisions requires the analysis of a wide range of heterogeneous, large and complex data. This paper focuses on the emerging field of graph warehousing. Graphs are widespread structures that yield a great expressive power. They are used for modeling highly complex and interconnected domains, and efficiently solving emerging big data application. This paper presents the current status and open challenges of graph BI and analytics, and motivates the need for new warehousing frameworks aware of the topological nature of graphs. We survey the topics of graph modeling, management, processing and analysis in graph warehouses. Then we conclude by discussing future research directions and positioning them within a unified architecture of a graph BI & analytics framework.

Amine Ghrab, Oscar Romero, Salim Jouili, Sabri Skhiri, Graph BI & Analytics: Current State and Future Challenges. DaWaK 2018, 3-18

Releated Posts

Development & Evaluation of Automated Tumour Monitoring by Image Registration Based on 3D (PET/CT) Images

Tumor tracking in PET/CT is essential for monitoring cancer progression and guiding treatment strategies. Traditionally, nuclear physicians manually track tumors, focusing on the five largest ones (PERCIST criteria), which is both time-consuming and imprecise. Automated tumor tracking can allow matching of the numerous metastatic lesions across scans, enhancing tumor change monitoring.
Read More

Insights from Data & AI Tech Summit Warsaw 2025

11 editions later, one of the biggest technological conferences in Central Europe changed its name to reflect the latest technological advancements. The BIG DATA TECHNOLOGY WARSAW SUMMIT became the DATA & AI WARSAW TECH SUMMIT, and the conference provided a rich platform for gaining fresh perspectives on data and AI. Our CTO, Sabri Skhiri, was present to gather the insights. Here’s a rundown of the key trends, keynotes and talks that took place.
Read More