Skip to content

Third Workshop on Real-time & Stream Analytics in Big Data

EURA NOVA Research center is proud and excited to organize the third workshop on Real-time and Stream analytics in Big Data, collocated with the 2018 IEEE conference on Big Data. The workshop will take place in December in Seattle, USA.

As the world become more connected, flood of digital data is getting generated, in high volume, and in a high velocity. For industries such as financial markets, telecommunications, Smart Cities, manufacturing, or healthcare, there is an increasing need to process, and analyze, these data streams in real time.

These past two years, we have seen arriving another usage of Stream & complex event processing: the data management. New architecture patterns have been proposed to resolve data pipeline and data management within enterprise.

After the success of the two first edition, this is an excellent opportunity to engage in discussions with experts and researchers, to refine new opportunities and use cases required by the industry.

Authors are invited to contribute to the conference by submitting articles in the (among others) following areas: Scalable real-time decision algorithms, IoT analytics & stream mining, Data pipelines & Data management with Streams and Stream ETL and Real-Time Data Warehouse.

 

Want to submit a paper? Check out the workshop website to find all the information you  will need. Your paper will be reviewed by a prestigious panel of international experts from both the academic and the industrial worlds.

Releated Posts

Internships 2024

This document presents internships supervised by our consulting department or by our research & development department. Each project is an opportunity to feel both empowered and responsible for your own professional development and for your contribution to the company.
Read More

Augment to Interpret: Unsupervised and Inherently Interpretable Graph Embeddings

In this paper, we study graph representation learning and show that data augmentation that preserves semantics can be learned and used to produce interpretations. Our framework, which we named INGENIOUS, creates inherently interpretable embeddings and eliminates the need for costly additional post-hoc analysis.
Read More