Skip to content

LEAD: A Formal Specification For Event Processing

Processing event streams is an increasingly important area for modern businesses aiming to detect and efficiently react to critical situations in near real-time. The need to govern the behaviour of systems where such streams exist has led to the development of numerous Complex Event Processing (CEP) engines, capable of detecting patterns and analyzing event streams. Although current CEP systems provide real-time analysis foundations for a variety of applications, several challenges arise due to languages’ limitations and imprecise semantics, as well as the lack of power to handle big data requirements. In this paper, we discuss such systems, analyzing some of the most sensitive issues in this domain. Further, in this context, we present our contributions expressed in LEAD, a formal specification for processing complex events. LEAD provides an algebra that consists of a set of operators for constructing complex events (patterns), temporally restricting the construction process and choosing among several selection and consumption policies. We show how to build LEAD rules to demonstrate the expressive power of our approach. Furthermore, we introduce a novel approach of interpreting these rules into a logical execution plan, built with temporal prioritized coloured petri nets.

Anas Al Bassit, Skhiri Sabri, LEAD: A Formal Specification For Event Processing, in 13Th ACM international Conference on distributed and event-based systems 2019

Click here to access the paper.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More