Skip to content

GraphOpt: Framework for Automatic Parameters Tuning of Graph Processing Frameworks

Finding the optimal configuration of a black-box system is a difficult problem that requires a lot of time and human labor. Big data processing frameworks are among the increasingly popular systems whose tuning is a complex and time consuming. The challenge of automatically finding the optimal parameters of big data frameworks attracted a lot of research in recent years. Some of the studies focused on optimizing specific frameworks such as distributed stream processing, or finding the best cloud configurations, while others proposed general services for optimizing any black-box system. In this paper, we introduce a new use case in the domain of automatic parameter tuning: optimizing the parameters of distributed graph processing frameworks. This task is notably difficult given the particular challenges of distributed graph processing that include the graph partitioning and the iterative nature of graph algorithms.

To address this challenge, we designed and implemented GraphOpt: an efficient and scalable black-box optimization framework that automatically tunes distributed graph processing frameworks. GraphOpt implements state-of-the-art optimization algorithms and introduces a new hill-climbing-based search algorithm. These algorithms are used to optimize the performance of two major graph processing frameworks: Giraph and GraphX. Extensive experiments were run on GraphOpt using multiple graph benchmarks to evaluate its performance and show that it provides up to 47.8% improvement compared to random search and an average improvement of up to 5.7%.

Muaz Twaty, Amine Ghrab, Skhiri Sabri: GraphOpt: a Framework for Automatic Parameters Tuning of Graph Processing Frameworks. 2019 IEEE International Conference on Big Data (Big Data) Workshops, Los Angeles, CA, USA.

The paper was published at the third IEEE International Workshop on Benchmarking, Performance Tuning and Optimization for Big Data Applications (BPOD 2019).

You can access it here in its preprint version.

Do not hesitate to contact our R&D department at [email protected] to discuss how you can leverage graph processing in your projects.

Releated Posts

Insights from GTC Paris 2025

Among the NVIDIA GTC Paris crowd was our CTO Sabri Skhiri, and from quantum computing breakthroughs to the full-stack AI advancements powering industrial digital twins and robotics, there is a lot to share! Explore with Sabri GTC 2025 trends, keynotes, and what it means for businesses looking to innovate.
Read More

Development & Evaluation of Automated Tumour Monitoring by Image Registration Based on 3D (PET/CT) Images

Tumor tracking in PET/CT is essential for monitoring cancer progression and guiding treatment strategies. Traditionally, nuclear physicians manually track tumors, focusing on the five largest ones (PERCIST criteria), which is both time-consuming and imprecise. Automated tumor tracking can allow matching of the numerous metastatic lesions across scans, enhancing tumor change monitoring.
Read More