Skip to content

A Performance Prediction Model for Spark Applications

Apache Spark is a popular open-source distributed-processing framework that enables efficient processing of massive amounts of data. It has a large number of parameters that need to be tuned to get the best performance. However, tuning these parameters manually is a complex and time-consuming task. Therefore, a robust performance model to predict applications execution time could greatly help in accelerating the deployment and optimization of big data applications relying on Spark. In this paper, we ran extensive experiments on a selected set of Spark applications that cover the most common workloads to generate a representative dataset of execution time. In addition, we extracted application and data features to build a machine learning-based performance model to predict Spark applications execution time. The experiments show that boosting algorithms achieved better results compared to other algorithms.

Florian Demesmaeker, Amine Ghrab, Usama Javaid, Ahmed Amir Kanoun, A Performance Prediction Model for Spark Applications, in the proceedings of Big Data congress 2020.

Click here to access the paper in its preprint form.

Releated Posts

Calibrate to Interpret

Trustworthy machine learning is driving a large number of the ML community works in order to improve ML acceptance and adoption. In this paper, we show a first link between uncertainty and explainability, by studying the relation between calibration and interpretation.
Read More

Mass Estimation of Planck Galaxy Clusters using Deep Learning

Galaxy cluster masses can be inferred indirectly using measurements from X-ray band, Sunyaev-Zeldovich (SZ) effect signal or optical observations. Unfortunately, all of them are affected by some bias. Alternatively, we provide an independent estimation of the cluster masses from the Planck PSZ2 catalogue of galaxy clusters using a machine-learning method.
Read More