Skip to content

Pruning Random Forest with Orthogonal Matching Trees

In this paper we propose a new method to reduce the size of Breiman’s Random Forests. Given a RandomForest and a target size, our algorithm builds a linear combination of trees which minimizes the training error. Selected trees, as well as weights of the linear combination are obtained by means of the Orthogonal Matching Pursuit algorithm. We test our method on many public benchmark datasets both on regression and binary classification, and we compare it to other pruning techniques. Experiments show that our technique performs significantly better or equally good on many datasets1. We also discuss the benefit and short-coming of learning weights for the pruned forest which lead us to propose to use a non-negative constraint on the OMP weights for better empirical results.

Luc Giffon, Charly Lamothe, Léo Bouscarrat, Paolo Milanesi, Farah Cherfaoui, and Sokol Ko, Pruning Random Forest with Orthogonal Matching Trees, Proc. of CAP 2020.

Click here to access the paper.

Releated Posts

Internships 2023

This document presents internships supervised by our software engineering department or by our research & development department. Each project is an opportunity to feel both empowered and responsible for your own professional development and for your contribution to the company.
Read More

AI For Aviation

Our team works with EUROCONTROL and WaPT to safely reduce wake separation between flights. Read on to read more about the two papers they recently published!
Read More