This document presents internships supervised by our software engineering department or by our research & development department. Each project is an opportunity to feel both empowered and responsible for your own professional development and for your contribution to the company.
Continue readingMASTER THESIS & PFE 2021
This document introduces you to master thesis and graduation projects supervised by our research & development department. Each project offers you the chance to be actively involved in the development of solutions to address tomorrow’s challenges in ICT and implementing them today!
Continue readingECML 2020 – The Keynotes
A few weeks ago, the biggest European conference on machine learning was held: ECML 2020. Our research engineer Nourchène, our R&D consultant Gianmarco, and our data scientist Ronan attended the event from Tunisia, Belgium and Marseille. In this article, they tell you about the different keynote talks they attended.
Gemma Galdon-Clavell – Algorithmic Auditing: how to open the black-box of ML
Nourchène says: “I loved the talk given by Gemma Galdon-Clavell during which she addressed the problem of ethics in AI, as computer science engineers do not often question what they are producing from a moral standpoint. In her talk, Gemma points out the importance of data used to train a machine learning model. Data are provided by humans, but people are not perfect, they are likely to make wrong decisions. The model will then learn to behave the same way. So we might end up creating an unethical model. This can lead to two different behaviours: users either will follow the system’s recommendations at any cost or decide not to if they find the decisions not reasonable. Data will then continue to be biased, which creates a sort of deadlock.”
Ronan adds: “Algorithms do not produce biases from anywhere; they reproduce and amplify biases they can find in the data they ingest. As a result, we have to pay attention first to the quality of the data we use. Gemma emphasizes that algorithmic auditing is the key to understanding if the algorithm meets the expectations and if it complies with the regulations. The audit does not only cover the technical part and the way the algorithm was coded. It also focuses on how the problem was approached and the means deployed to solve it.”
Nourchène explains: “The speaker suggests that before creating a product, computer science engineers and developers need to ask the following questions: Is the product desirable and what is the problem that it tries to solve? Is it acceptable and does it involve users? Is it legal? Finally, does it use the right data? Gemma also suggests that ethics be taught in engineering schools. I totally agree with that because nowadays technology does not always seek to solve real problems, its goal is rather to make a fortune out of the proposed product.”
Max Welling – Amortized and Neural Augmented Inference
Gianmarco says: ‘My favourite talk was the one held by Max Welling. It clearly showed and unified the underlying theoretical grounds of many superficially different models, without failing to provide real-world applications. More concretely, the talk showed how to develop hybrid amortized methods that combine classical learning, inference and optimization algorithms with learned neural networks, which is of strong interest, especially in physics-related fields.
It provided a comprehensive and complete exposition of the topic of amortized neural inference and, as a consequence, it did not fail in bringing the spectator up-to-date with applications in that regard. Max Welling presented how a learned neural network can augment or correct a classical solution (attained by means of expert-knowledge or classical equations), or reversely, how a neural network can be fed useful information computed by a classical method.”
Been Kim – Interpretability for everyone
Gianmarco says: “I was exposed to many new topics and applications I was not familiar with. Talks like Interpretability for everyone that offered more abstract research were the ones that struck my attention the most. The talk presented the latest discoveries and tools in terms of interpretability quantification. It also introduces how to extract interpretability from a black-box end-to-end model, which I find very important for the construction of more robust models and model diagnosis.”
Doina Precup – Building Knowledge For AI Agents With Reinforcement Learning
Ronan says: “I really liked the talk given by Doina Precup on how to build knowledge in the field of reinforcement learning. I only had little knowledge of this field. Thankfully, Doina introduced us quickly to the key concepts of reinforcement learning. She also presented us with some big successes of RL, presented different RL mechanisms and went towards the problem of using existing knowledge to build a life-long learning agent. Doina concluded her talk with a lot of open and inspiring questions: How can we exploit previously learned knowledge and apply it to new environments not related in any manner to the previous ones? How well is an agent preserving and enhancing its knowledge? These questions might not have definitive answers or just answers at all but I found very relevant and interesting the interrogations she raises on how we can represent knowledge.
Stephan Günnemann about Certifiable Robustness of ML Models for Graphs
Ronan says: In this technical talk, Stephan presented us different methods to assess GNN robustness. To certificate the robustness of a GNN, an evaluation of its sensitivity to perturbations needs to be conducted. For example, you can search for a worst-case scenario, and verify that the margin is positive to ensure the model is robust. Stephan’s talk was very pleasant to listen to, as he accompanied it with several examples and applications of the methods he presented us. Finally, he concluded that ML models for graphs aren’t reliable but that we can apply certificates and robustification principles to provide guarantees for a reliable use of GNNs.
Watch the talks:
If you wish to catch up on talks we mentioned or those you missed, all the sessions, paper and presentation recordings are available (for a limited time) from the ECML website.
Gemma Galdon-Clavell
Max Welling :
Been Kim
Doina Precup
Stephan Günnemann
ECML 2020 – A Summary
A few weeks ago, the biggest European conference on machine learning was held: ECML 2020. Our research engineer Nourchène, our R&D consultant Gianmarco, and our data scientist Ronan attended the event from Tunisia, Belgium and Marseille. What were the big trends and their favourite talks? What did they think of the online remote format? Let’s find out with them!
The Big Trends
The overall conference was very well up-to-date with the outside world’s latest trends and needs. Gianmarco explains: “The conference was rich in presentations which covered nearly all possible topics in machine learning. However, I had the impression that Graph Neural Networks and Generative Models had a little more presence than other models. Transfer learning was also another topic that seemed to be very relevant throughout the conference.”
Remote Format For The First Time
Due to the COVID-19 pandemic, the conference was fully virtual. The talks were pre-recorded and made available prior to the conference. The live sessions were dedicated to questions and answers, with a very brief presentation at the beginning of the session.
Nourchène explains: “The downside was that we had to watch the whole presentation beforehand, otherwise it was difficult to follow the discussion and to interact with the speaker. Fun fact: there was a session where even the moderator was not aware of this Q&A aspect and asked the speaker why the presentation was so short! The good thing is that, since the presentations were pre-recorded, it was possible to watch the presentations from sessions running in parallel.”
Gianmarco adds: “I have not had many remote conferences in my life, but I was genuinely surprised to see how well-organised this one was. The remote framework was very well-designed, the web interface was fully functional, and they took advantage of all the benefits that a remote event can have like re-watchable presentations.”
Kudos to the organising committee for pulling it off!
The Keynotes
We wrote an article with more details about different keynotes that you can find on this link, but here is a teaser:
Gemma Galdon-Clavell – Algorithmic Auditing: how to open the black-box of ML
In her talk, Gemma points out the importance of data used to train a machine learning model. According to her, algorithmic auditing is the key to understanding if the algorithm meets the expectations and if it complies with the regulations. This audit does not only cover the technical part and the way the algorithm was coded. It also focuses on how the problem was approached and the means deployed to solve it. Read our detailed review here.
Max Welling – Amortized and Neural Augmented Inference
The talk showed and unified the underlying theoretical grounds of many superficially different models, without failing to provide real-world applications. It provides a comprehensive and complete exposition of the topic of amortized neural inference and, as a consequence, it did not fail in bringing the spectator up-to-date with applications in that regard. Read more here.
Been Kim – Interpretability for everyone
The talk presented the latest discoveries and tools in terms of interpretability quantification. It also introduces how to extract interpretability from a black-box end-to-end model. Read more in our article.
Doina Precup – Building Knowledge For AI Agents With Reinforcement Learning
Doina Precup talks on how to build knowledge in the field of reinforcement learning. She also presents some big successes of RL, presented different RL mechanisms and went towards the problem of using existing knowledge to build a life-long learning agent. Discover more!
Stephan Günnemann – Certifiable Robustness of ML Models for Graphs
Stephan presented different methods to assess GNN robustness: an evaluation of its sensitivity to perturbations needs to be conducted. Learn more with Ronan here.
Interesting Paper?
Si-An Chen; Voot Tangkaratt; Hsuan-Tien Lin; Masashi Sugiyama – Active deep Q-learning with demonstration
Nourchène says: “The authors presented their paper proposing different groups of techniques for learning from demonstration in Reinforcement Learning, like RL Expert Demonstration (RLED) or Active RL Demonstration (ARLD). These techniques can be used to fasten the learning process of an RL agent. They also propose an uncertainty-based query strategy named Active Deep Q-Network, based on DQN, to dynamically estimate the uncertainty of recent states and use the queried demonstration data.“
Favourite tutorial
Learning With Imbalanced Domains and Rare Event Detection
Ronan says: “This tutorial was interesting and well-structured. Imbalance domains and rare-events prediction concern a lot of domains: financial, medical, data distribution… and will always remain a centre of attention in designing the appropriate solution to a problem. As a consequence, it will remain a core problem in the research. I particularly liked this tutorial as it covered a lot of different approaches: unsupervised (statistical-based, proximity-based, clustering-based), supervised and semi-supervised and compared them. As there is no ideal solution that can be applied to every problem, you have to know what exists before choosing the one that better fits your problem. The tutorial also covered different methods to properly evaluate the performance of an algorithm on an imbalanced task. ”
Conclusion
The conference provided a wide range of machine learning topics in the form of presentations about the latest trends, technologies and applications. As Nourchène says: “it is an optimal platform to stay up-to-date, to widen one’s perspectives and/or dig deeper into a specific topic.”
Watch the talks:
If you wish to catch up on talks we mentioned or those you missed, all the sessions, paper and presentation recordings are available (for a limited time) from the ECML website.
Gemma Galdon-Clavell
Max Welling
Been Kim
Doina Precup
Stephan Günnemann
Active deep Q-learning with demonstration: Read the paper