Skip to content

Padhoc: a Computational Pipeline for Pathway Reconstruction On The Fly

Molecular pathway databases represent cellular processes in a structured and standardized way. These databases support the community-wide utilization of pathway information in biological research and the computational analysis of high-throughput biochemical data. Although pathway databases are critical in genomics research, the fast progress of biomedical sciences prevents databases from staying up-to-date. Moreover, the compartmentalization of cellular reactions into defined pathways reflects arbitrary choices that might not always be aligned with the needs of the researcher. Today, no tool exists that allow the easy creation of user-defined pathway representations.

Here we present Padhoc, a pipeline for pathway ad hoc reconstruction. Based on a set of user-provided keywords, Padhoc combines natural language processing, database knowledge extraction, orthology search and powerful graph algorithms to create navigable pathways tailored to the user’s needs. We validate Padhoc with a set of well-established Escherichia coli pathways and demonstrate usability to create not-yet-available pathways in model (human) and non-model (sweet orange) organisms.

Salvador Casaní-Galdón, Cecile Pereira, Ana Conesa, Padhoc: a computational pipeline for pathway reconstruction on the fly, Bioinformatics, Volume 36 (2):i795–i803, December 2020.

DOI : https://doi.org/10.1093/bioinformatics/btaa811

Click here to access the paper.

Releated Posts

Calibrate to Interpret

Trustworthy machine learning is driving a large number of the ML community works in order to improve ML acceptance and adoption. In this paper, we show a first link between uncertainty and explainability, by studying the relation between calibration and interpretation.
Read More

Mass Estimation of Planck Galaxy Clusters using Deep Learning

Galaxy cluster masses can be inferred indirectly using measurements from X-ray band, Sunyaev-Zeldovich (SZ) effect signal or optical observations. Unfortunately, all of them are affected by some bias. Alternatively, we provide an independent estimation of the cluster masses from the Planck PSZ2 catalogue of galaxy clusters using a machine-learning method.
Read More