Skip to content

MIC: Multi-view Image Classifier using Generative Adversarial Networks for Missing Data Imputation

In this paper, we propose a framework for image classification tasks, named MIC, that takes as input multi-view images, such as RGB-T images for surveillance purposes. We combine auto-encoder and generative adversarial network architectures to ensure the multi-view embedding in a common latent space. Then, the resulting features are fed to the classification stage. The proposed framework is able to, all at once, train the multi-view embedding model to find a shared latent representation for the different views, perform data imputation (generate the missing views) and ensure the classification task by predicting the labels. Experiments on the MNIST dataset with a panoply of classifiers and several missingness ratios show the effectiveness of our solution.

Gianmarco Aversano, Mahmoud Jarraya, Maher Marwani, Ichraf Lahouli and Sabri Skhiri, MIC: Multi-view Image Classifier using Generative Adversarial Networks for Missing Data Imputation,  Proc. of the 18th IEEE International Multi-conference on Systems, Signals and Devices, 2021

Click here to access the paper.

Releated Posts

The Building Blocks of a Responsible AI Practice: An Outlook on the Current Landscape

Responsible AI comes with the challenge of implementation. This survey aims to bridge the gap between principles and practice through a study of different approaches taken in the literature and the proposition of a foundational framework.
Read More

TS-Relax : Interprétation des représentations apprises pour les séries temporelles

Les modèles d’apprentissage de représentations sont de plus en plus utilisés, mais des modèles d’IA explicables et de confiance sont nécessaires. Ce travail présente l’adaptation aux séries temporelles d’une méthode d’interprétation de représentation initialement conçue pour les images.
Read More