Skip to content

MIC: Multi-view Image Classifier using Generative Adversarial Networks for Missing Data Imputation

In this paper, we propose a framework for image classification tasks, named MIC, that takes as input multi-view images, such as RGB-T images for surveillance purposes. We combine auto-encoder and generative adversarial network architectures to ensure the multi-view embedding in a common latent space. Then, the resulting features are fed to the classification stage. The proposed framework is able to, all at once, train the multi-view embedding model to find a shared latent representation for the different views, perform data imputation (generate the missing views) and ensure the classification task by predicting the labels. Experiments on the MNIST dataset with a panoply of classifiers and several missingness ratios show the effectiveness of our solution.

Gianmarco Aversano, Mahmoud Jarraya, Maher Marwani, Ichraf Lahouli and Sabri Skhiri, MIC: Multi-view Image Classifier using Generative Adversarial Networks for Missing Data Imputation,  Proc. of the 18th IEEE International Multi-conference on Systems, Signals and Devices, 2021

Click here to access the paper.

Releated Posts

Internships 2023

This document presents internships supervised by our software engineering department or by our research & development department. Each project is an opportunity to feel both empowered and responsible for your own professional development and for your contribution to the company.
Read More

AI For Aviation

Our team works with EUROCONTROL and WaPT to safely reduce wake separation between flights. Read on to read more about the two papers they recently published!
Read More