Skip to content

DAEMA: Denoising Autoencoder with Mask Attention

Missing data is a recurrent and challenging problem, especially when using machine learning algorithms for real-world applications. For this reason, missing data imputation has become an active research area, in which recent deep learning approaches have achieved state-of-the-art results. We propose DAEMA: Denoising Autoencoder with Mask Attention, an algorithm based on a denoising autoencoder architecture with an attention mechanism.
While most imputation algorithms use incomplete inputs as they would use complete data – up to basic preprocessing (e.g. mean imputation) – DAEMA leverages a mask-based attention mechanism to focus on the observed values of its inputs.
We evaluate DAEMA both in terms of reconstruction capabilities and downstream prediction and show that it achieves superior performance to state-of-the-art algorithms on several publicly available real-world datasets under various missingness settings.

The paper won the third-best paper award of ICANN 2021! It is freely accessible in its preprint form: https://arxiv.org/abs/2106.16057.

Simon Tihon*, Muhammad Usama Javaid*, Damien Fourure, Nicolas Posocco, Thomas Peel, DAEMA: Denoising Autoencoder with Mask Attention, In Proc. of the The 30th International Conference on Artificial Neural Networks, 2021.

* equal contributions

Watch the presentation on YouTube.

Share on linkedin
Share on twitter
Share on email

Releated Posts

15 Papers in 2021: the outputs

The only way to master knowledge is to explore and enrich it. As we look back on the year 2021, we are proud to say that our R&D department has published 15 peer-reviewed scientific papers this year. Find out the impacts of the published papers in our new article.
Read More

2021 Wrap Up

We got a deep dive into some of the most memorable moments of 2021.
Read More