Skip to content

AMI-Class: Towards a Fully Automated Multi-view Image Classifier

In this paper, we propose an automated framework for multi-view image classification tasks. We combined a GAN-based multi-view embedding architecture with a scalable AutoML library, DeepHyper. The proposed framework is able to, all at once, train a model to find a common latent representation and perform data imputation, choose the best classifier and tune all necessary hyper-parameters. Experiments on the MNIST data-set show the effectiveness of our solution to optimize the end-to-end multi-view classification pipeline.

Mahmoud Jarraya, Maher Marwani, Gianmarco Aversano, Ichraf Lahouli and Sabri Skhiri, AMI-Class: Towards a Fully Automated Multi-view Image Classifier, In Proc. of The 19th International Conference on Computer Analysis of Images and Patterns CAIP2021, September 2021.

Click here to access the paper.

Releated Posts

Insights From Flink Forward 2024

In October, our CTO Sabri Skhiri attended the Flink Forward conference, held in Berlin, which marked the 10-year anniversary of Apache Flink. This event brought together experts and enthusiasts in the field of stream processing to discuss the latest advancements, challenges, and future trends. In this article, Sabri will delve into some of the keynotes and talks that took place during the conference, highlighting the noteworthy insights and innovations shared by Ververica and industry leaders.
Read More

Internships 2025

This document presents internships supervised by our consulting department or by our research & development department. Each project is an opportunity to feel both empowered and responsible for your own professional development and for your contribution to the company.
Read More