Skip to content

AMI-Class: Towards a Fully Automated Multi-view Image Classifier

In this paper, we propose an automated framework for multi-view image classification tasks. We combined a GAN-based multi-view embedding architecture with a scalable AutoML library, DeepHyper. The proposed framework is able to, all at once, train a model to find a common latent representation and perform data imputation, choose the best classifier and tune all necessary hyper-parameters. Experiments on the MNIST data-set show the effectiveness of our solution to optimize the end-to-end multi-view classification pipeline.

Mahmoud Jarraya, Maher Marwani, Gianmarco Aversano, Ichraf Lahouli and Sabri Skhiri, AMI-Class: Towards a Fully Automated Multi-view Image Classifier, In Proc. of The 19th International Conference on Computer Analysis of Images and Patterns CAIP2021, September 2021.

Click here to access the paper.

Share on linkedin
Share on twitter
Share on email

Releated Posts

Multimodal Classifier For Space Target Recognition

We propose a multi-modal framework to tackle the SPARK Challenge by classifying satellites using RGB and depth images. Our framework is mainly based on Auto-Encoders to embed the two modalities in a common latent space in order to exploit redundant and complementary information between the two types of data.
Read More

Advancing Innovation in Data Management

To build a data-driven economy across Europe and create a significant competitive advantage for European industry, companies will have to address the challenges in the data engineering and management domain. We are proud to partner with four top-class European institutions.
Read More