Skip to content

AMI-Class: Towards a Fully Automated Multi-view Image Classifier

In this paper, we propose an automated framework for multi-view image classification tasks. We combined a GAN-based multi-view embedding architecture with a scalable AutoML library, DeepHyper. The proposed framework is able to, all at once, train a model to find a common latent representation and perform data imputation, choose the best classifier and tune all necessary hyper-parameters. Experiments on the MNIST data-set show the effectiveness of our solution to optimize the end-to-end multi-view classification pipeline.

Mahmoud Jarraya, Maher Marwani, Gianmarco Aversano, Ichraf Lahouli and Sabri Skhiri, AMI-Class: Towards a Fully Automated Multi-view Image Classifier, In Proc. of The 19th International Conference on Computer Analysis of Images and Patterns CAIP2021, September 2021.

Click here to access the paper.

Releated Posts

2022 Wrap Up

We got a deep dive into some of the most memorable moments of 2022.
Read More

IEEE Big Data 2022: the key takeaways

In December 2022, our research director Sabri Skhiri travelled to Osaka to attend IEEE Big Data 2022. He sums up the main trends, and shares his favourite talks and papers.
Read More