Skip to content

Mass Estimation of Planck Galaxy Clusters using Deep Learning

Galaxy cluster masses can be inferred indirectly using measurements from X-ray band, Sunyaev-Zeldovich (SZ) effect signal or optical observations. Unfortunately, all of them are affected by some bias. Alternatively, we provide an independent estimation of the cluster masses from the Planck PSZ2 catalogue of galaxy clusters using a machine-learning method. We train a Convolutional Neural Network (CNN) model with the mock SZ observations from The Three Hundred (the300) hydrodynamic simulations to infer the cluster masses from the real maps of the Planck clusters. The advantage of the CNN is that no assumption on a priory symmetry in the cluster’s gas distribution or no additional hypothesis about the cluster’s physical state is made. We compare the cluster masses from the CNN model with those derived by Planck and conclude that the presence of a mass bias is compatible with the simulation results.

Daniel de Andres, Weiguang Cui, Florian Ruppin, Marco De Petris, Gustavo Yepes, Ichraf Lahouli, Gianmarco Aversano, Romain Dupuis, and Mahmoud Jarraya, Mass Estimation of Planck Galaxy Clusters using Deep Learning, EPJ Web of Conferences, January 2022, 257, 00013.

DOI: https://doi.org/10.1051/epjconf/202225700013

Click here to access the paper.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More