Skip to content

Dynamic Pairwise Wake Vortex Separations For Arrivals Using Predictive Machine Learning Models

The potential encounter of wake vortices from a preceding flight is at the origin of the wake separation minima between aircraft on the final approach. Wake separations ensure safety under all conditions, but have been shown to be over-conservative in some meteorological conditions which directly penalises runway performance. This paper describes the Dynamic Pairwise Wake Separation for Arrivals (D-PWS-A) concept which has been developed in order to safely reduce, when possible, wake separation minima between consecutive arrivals on the final approach based on wake risk monitoring. Aircraft wake behaviour and meteorological information is monitored and processed using Machine Learning (ML) algorithms which determine the wake separation minimum reductions that can be safely applied between subsequent arriving aircraft. The use of wake behaviour monitoring combined with ML techniques allows us to maximise the conditions under which wake separations can be reduced. The model is developed and tested based on field data collected in Paris-CDG airport.

Lorenzo Frigerio, Ivan De Visscher, Guillaume Stempfel, Rocio Barragan Montes & Catherine Chalon Morgan, In Proc. of The 33rd Congress of the International Council of the Aeronautical Sciences (ICAS), September 2022.

Click here to access the paper.

Releated Posts

Kafka Summit 2024: Announcements & Trends

The Kafka Summit brought together industry experts, developers, and enthusiasts to discuss the latest advancements and practical applications of event streaming and microservices. In this article, our CTO Sabri Skhiri
Read More

Privacy Enhancing Technologies 2024: A Summary

For Large Language Models (LLMs), Azure confidential computing offers TEEs to protect data integrity throughout various stages of the LLM lifecycle, including prompts, fine-tuning, and inference. This ensures that all
Read More