Skip to content

Comparison of Machine Learning Approaches for POD24 Prediction

Follicular Lymphoma (FL) is the second most common non-Hodgkin lymphoma in adults and is heterogeneous with 20% of poor-outcome patients relapsing/progressing within 24 months (POD24) of first treatment start (Casulo et al., JCO 2015). Early identification of those POD24 patients is critical but remains elusive. We initiated a collaboration between the academic CALYM Carnot Institute and the private company Euranova aiming at developing interpretable artificial intelligence (AI) models based on Positron Emission Tomography (PET) images to predict POD24.

Duc Thang Hoang, Elsa Schalck, Romain Ricci, Loïc Chartier, Léa Marlot, Bertrand Nadel, Emmanuel Gomez, Franck Morschhauser, Luc Xerri, Salim Kanoun, Cédric RossiComparison of Machine Learning Approaches for POD24 Prediction, In Proc. of The International Conference on Malignant Lymphoma, June 2023.

Click here to access the paper.

Releated Posts

Investigating a Feature Unlearning Bias Mitigation Technique for Cancer-type Bias in AutoPet Dataset

We proposed a feature unlearning technique to reduce cancer-type bias, which improved segmentation accuracy while promoting fairness across sub-groups, even with limited data.
Read More

Muppet: A Modular and Constructive Decomposition for Perturbation-based Explanation Methods

The topic of explainable AI has recently received attention driven by a growing awareness of the need for transparent and accountable AI. In this paper, we propose a novel methodology to decompose any state-of-the-art perturbation-based explainability approach into four blocks. In addition, we provide Muppet: an open-source Python library for explainable AI.
Read More