Skip to content

Comparison of Machine Learning Approaches for POD24 Prediction

Follicular Lymphoma (FL) is the second most common non-Hodgkin lymphoma in adults and is heterogeneous with 20% of poor-outcome patients relapsing/progressing within 24 months (POD24) of first treatment start (Casulo et al., JCO 2015). Early identification of those POD24 patients is critical but remains elusive. We initiated a collaboration between the academic CALYM Carnot Institute and the private company Euranova aiming at developing interpretable artificial intelligence (AI) models based on Positron Emission Tomography (PET) images to predict POD24.

Duc Thang Hoang, Elsa Schalck, Romain Ricci, Loïc Chartier, Léa Marlot, Bertrand Nadel, Emmanuel Gomez, Franck Morschhauser, Luc Xerri, Salim Kanoun, Cédric RossiComparison of Machine Learning Approaches for POD24 Prediction, In Proc. of The International Conference on Malignant Lymphoma, June 2023.

Click here to access the paper.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More