Skip to content

Comparison of Machine Learning Approaches for POD24 Prediction

Follicular Lymphoma (FL) is the second most common non-Hodgkin lymphoma in adults and is heterogeneous with 20% of poor-outcome patients relapsing/progressing within 24 months (POD24) of first treatment start (Casulo et al., JCO 2015). Early identification of those POD24 patients is critical but remains elusive. We initiated a collaboration between the academic CALYM Carnot Institute and the private company Euranova aiming at developing interpretable artificial intelligence (AI) models based on Positron Emission Tomography (PET) images to predict POD24.

Duc Thang Hoang, Elsa Schalck, Romain Ricci, Loïc Chartier, Léa Marlot, Bertrand Nadel, Emmanuel Gomez, Franck Morschhauser, Luc Xerri, Salim Kanoun, Cédric RossiComparison of Machine Learning Approaches for POD24 Prediction, In Proc. of The International Conference on Malignant Lymphoma, June 2023.

Click here to access the paper.

Releated Posts

The Building Blocks of a Responsible AI Practice: An Outlook on the Current Landscape

Responsible AI comes with the challenge of implementation. This survey aims to bridge the gap between principles and practice through a study of different approaches taken in the literature and the proposition of a foundational framework.
Read More

TS-Relax : Interprétation des représentations apprises pour les séries temporelles

Les modèles d’apprentissage de représentations sont de plus en plus utilisés, mais des modèles d’IA explicables et de confiance sont nécessaires. Ce travail présente l’adaptation aux séries temporelles d’une méthode d’interprétation de représentation initialement conçue pour les images.
Read More