Skip to content

TS-Relax : Interprétation des représentations apprises pour les séries temporelles

Les modèles d’apprentissage de représentations sont de plus en plus utilisés, mais leur opacité peut être problématique dans des domaines tels que la santé ou la justice. Des modèles d’IA explicables et de confiance sont nécessaires. Ce travail présente l’adaptation aux séries temporelles, d’une méthode d’interprétation de représentation initialement conçue pour les images. Nous proposons un protocole quantitatif pour évaluer la pertinence de cette adaptation. Les résultats préliminaires encourageants nous amènent à envisager des perspectives de recherches sur la spécifité de l’interprétabilité des modèles d’apprentissage de représentations sur les séries temporelles.

Aziz Jedidi, Thomas Blanchard, Antoine Bonnefoy, TS-Relax : Interprétation des représentations apprises pour les séries temporelles. In Proc. of The Conférence sur l’Apprentissage Automatique, July 2023.

Click here to access the paper.

Releated Posts

Muppet: A Modular and Constructive Decomposition for Perturbation-based Explanation Methods

The topic of explainable AI has recently received attention driven by a growing awareness of the need for transparent and accountable AI. In this paper, we propose a novel methodology to decompose any state-of-the-art perturbation-based explainability approach into four blocks. In addition, we provide Muppet: an open-source Python library for explainable AI.
Read More

Insights from GTC Paris 2025

Among the NVIDIA GTC Paris crowd was our CTO Sabri Skhiri, and from quantum computing breakthroughs to the full-stack AI advancements powering industrial digital twins and robotics, there is a lot to share! Explore with Sabri GTC 2025 trends, keynotes, and what it means for businesses looking to innovate.
Read More