Skip to content

TS-Relax : Interprétation des représentations apprises pour les séries temporelles

Les modèles d’apprentissage de représentations sont de plus en plus utilisés, mais leur opacité peut être problématique dans des domaines tels que la santé ou la justice. Des modèles d’IA explicables et de confiance sont nécessaires. Ce travail présente l’adaptation aux séries temporelles, d’une méthode d’interprétation de représentation initialement conçue pour les images. Nous proposons un protocole quantitatif pour évaluer la pertinence de cette adaptation. Les résultats préliminaires encourageants nous amènent à envisager des perspectives de recherches sur la spécifité de l’interprétabilité des modèles d’apprentissage de représentations sur les séries temporelles.

Aziz Jedidi, Thomas Blanchard, Antoine Bonnefoy, TS-Relax : Interprétation des représentations apprises pour les séries temporelles. In Proc. of The Conférence sur l’Apprentissage Automatique, July 2023.

Click here to access the paper.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More