Skip to content

TS-Relax : Interprétation des représentations apprises pour les séries temporelles

Les modèles d’apprentissage de représentations sont de plus en plus utilisés, mais leur opacité peut être problématique dans des domaines tels que la santé ou la justice. Des modèles d’IA explicables et de confiance sont nécessaires. Ce travail présente l’adaptation aux séries temporelles, d’une méthode d’interprétation de représentation initialement conçue pour les images. Nous proposons un protocole quantitatif pour évaluer la pertinence de cette adaptation. Les résultats préliminaires encourageants nous amènent à envisager des perspectives de recherches sur la spécifité de l’interprétabilité des modèles d’apprentissage de représentations sur les séries temporelles.

Aziz Jedidi, Thomas Blanchard, Antoine Bonnefoy, TS-Relax : Interprétation des représentations apprises pour les séries temporelles. In Proc. of The Conférence sur l’Apprentissage Automatique, July 2023.

Click here to access the paper.

Releated Posts

Insights From Flink Forward 2024

In October, our CTO Sabri Skhiri attended the Flink Forward conference, held in Berlin, which marked the 10-year anniversary of Apache Flink. This event brought together experts and enthusiasts in the field of stream processing to discuss the latest advancements, challenges, and future trends. In this article, Sabri will delve into some of the keynotes and talks that took place during the conference, highlighting the noteworthy insights and innovations shared by Ververica and industry leaders.
Read More

Internships 2025

This document presents internships supervised by our consulting department or by our research & development department. Each project is an opportunity to feel both empowered and responsible for your own professional development and for your contribution to the company.
Read More