Skip to content

Large graph mining: recent developments, challenges and potential solutions

With the recent growth of the graph-based data, the large graph processing becomes more and more important. In order to explore and to extract knowledge from such data, graph mining methods, like community detection, is a necessity. The legacy graph processing tools mainly rely on single machine computational capacity, which cannot process large graphs with billions of nodes. Therefore, the main challenge of new tools and frameworks lies on the development of new paradigms that are scalable, efficient and flexible. In this paper, we review the new paradigms of large graph processing and their applications to graph mining domains using the distributed and shared nothing approach used for large data by internet players.

 

Sabri Skhiri, and Salim Jouili, Large Graph Mining: Recent Developments, Challenges and Potential Solutions, presentation during the European Business Intelligence Summer School (eBISS 2012) organized by the Université Libre de Bruxelles and the Ecole Centrale Paris, Brussels, Belgium, July 2012.

Click here to access the paper in its preprint form.

Releated Posts

Insights from GTC Paris 2025

Among the NVIDIA GTC Paris crowd was our CTO Sabri Skhiri, and from quantum computing breakthroughs to the full-stack AI advancements powering industrial digital twins and robotics, there is a lot to share! Explore with Sabri GTC 2025 trends, keynotes, and what it means for businesses looking to innovate.
Read More

Development & Evaluation of Automated Tumour Monitoring by Image Registration Based on 3D (PET/CT) Images

Tumor tracking in PET/CT is essential for monitoring cancer progression and guiding treatment strategies. Traditionally, nuclear physicians manually track tumors, focusing on the five largest ones (PERCIST criteria), which is both time-consuming and imprecise. Automated tumor tracking can allow matching of the numerous metastatic lesions across scans, enhancing tumor change monitoring.
Read More