Skip to content

Third Workshop on Real-time & Stream Analytics in Big Data

EURA NOVA Research center is proud and excited to organize the third workshop on Real-time and Stream analytics in Big Data, collocated with the 2018 IEEE conference on Big Data. The workshop will take place in December in Seattle, USA.

As the world become more connected, flood of digital data is getting generated, in high volume, and in a high velocity. For industries such as financial markets, telecommunications, Smart Cities, manufacturing, or healthcare, there is an increasing need to process, and analyze, these data streams in real time.

These past two years, we have seen arriving another usage of Stream & complex event processing: the data management. New architecture patterns have been proposed to resolve data pipeline and data management within enterprise.

After the success of the two first edition, this is an excellent opportunity to engage in discussions with experts and researchers, to refine new opportunities and use cases required by the industry.

Authors are invited to contribute to the conference by submitting articles in the (among others) following areas: Scalable real-time decision algorithms, IoT analytics & stream mining, Data pipelines & Data management with Streams and Stream ETL and Real-Time Data Warehouse.

 

Want to submit a paper? Check out the workshop website to find all the information you  will need. Your paper will be reviewed by a prestigious panel of international experts from both the academic and the industrial worlds.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More