Skip to content

A Performance Prediction Model for Spark Applications

Apache Spark is a popular open-source distributed-processing framework that enables efficient processing of massive amounts of data. It has a large number of parameters that need to be tuned to get the best performance. However, tuning these parameters manually is a complex and time-consuming task. Therefore, a robust performance model to predict applications execution time could greatly help in accelerating the deployment and optimization of big data applications relying on Spark. In this paper, we ran extensive experiments on a selected set of Spark applications that cover the most common workloads to generate a representative dataset of execution time. In addition, we extracted application and data features to build a machine learning-based performance model to predict Spark applications execution time. The experiments show that boosting algorithms achieved better results compared to other algorithms.

Florian Demesmaeker, Amine Ghrab, Usama Javaid, Ahmed Amir Kanoun, A Performance Prediction Model for Spark Applications, in the proceedings of Big Data congress 2020.

Click here to access the paper in its preprint form.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More