Skip to content

Privacy Policy Classification with XLNet

The popularisation of privacy policies has become an attractive subject of research in recent years, notably after the General Data Protection Regulation came into force in the European Union. While GDPR gives Data Subjects more rights and control over the use of their personal data, length and complexity of privacy policies can still prevent them from exercising those rights. An accepted way to improve the interpretability of privacy policies is through assigning understandable categories to every paragraph or segment in said documents. The current state of the art in privacy policy analysis has established a baseline in multi-label classification on the dataset containing 115 privacy policies, using BERT Transformers. In this paper, we propose a new classification model based on the XLNet. Trained on the same dataset, our model improves the baseline F1 macro and micro averages by 1-3% for both majority vote and union-based gold standards. Moreover, the results reported by our XLNet-based model have been achieved without fine-tuning on domain-specific data, which reduces the training time and complexity, compared to the BERT-based model. To make our method reproducible, we report our hyper-parameters and provide access to all used resources, including code. This work may, therefore, be considered as a first step to establishing a new baseline for privacy policy classification.

Majd Mustapha, Katsiaryna Krasnashchok, Anas Al Bassit and Sabri Skhiri, Privacy Policy Classification with XLNet, Proc. of the 15th DPM International Workshop on Data Privacy Management, Surrey, UK, 2020.

Click here to access the paper in its preprint form.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More