Skip to content

Our engineer Amine Ghrab presented his PhD public defense on the BI on Graph Project

Last Thursday, our engineer Amine Ghrab presented the BI on Graph project during his PhD public defense. Amine did an amazing job at the edge between Industry & Academia. Amine’s thesis was done in collaboration with the CODE/WIT Lab of the Université Libre de Bruxelles and the Universitat Politècnica de Catalunya, with the support of Prof. Oscar Romero & Prof. Esteban Zimanyi!

In his PhD thesis, Amine defined how BI environments can be enriched with Graph Data structures. Over the past decade, business and social environments have become increasingly complex and interconnected. As a result, graphs have emerged as a widespread abstraction tool at the core of the information infrastructure that supports these environments. In particular, the integration of graphs into data warehouse systems has appeared as a way to extend current information systems with graphs management and analysis capabilitiesGoing forward, Amine redefined the concepts of multidimensional cube on graph and showed how it can open new doors for data analysts. Finally, he showed how a graph data warehouse architecture can be defined.

Congratulation for your achievements!

You can find below a list of related publications:

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More