Skip to content

A Fair Classifier Embracing Triplet Collapse

In this paper, we study the behaviour of the triplet loss and show that it can be exploited to limit the biases created and perpetuated by machine learning models. Our fair classifier uses the collapse of the triplet loss when its margin is greater than the maximum distance between two points in the latent space, in the case of stochastic triplet selection.

Alice Martzloff, Nicolas Posocco, Quentin Ferré, A Fair Classifier Embracing Triplet Collapse, In Proc. of The Conférence sur l’Apprentissage Automatique, July 2023.

Click here to access the paper.

Releated Posts

Insights from GTC Paris 2025

Among the NVIDIA GTC Paris crowd was our CTO Sabri Skhiri, and from quantum computing breakthroughs to the full-stack AI advancements powering industrial digital twins and robotics, there is a lot to share! Explore with Sabri GTC 2025 trends, keynotes, and what it means for businesses looking to innovate.
Read More

Development & Evaluation of Automated Tumour Monitoring by Image Registration Based on 3D (PET/CT) Images

Tumor tracking in PET/CT is essential for monitoring cancer progression and guiding treatment strategies. Traditionally, nuclear physicians manually track tumors, focusing on the five largest ones (PERCIST criteria), which is both time-consuming and imprecise. Automated tumor tracking can allow matching of the numerous metastatic lesions across scans, enhancing tumor change monitoring.
Read More