Skip to content

An approach for maximizing performance on heterogeneous clusters of CPU and GPU

Over the past years there has been significant enthusiasm for development of parallel computing on Graphics Processing Units (GPU) which have now become powerful and affordable hardware equipping data centers and research clusters. Our earlier research has explored the ways to exploit the parallel compute performance of the GPU along the CPU in the same cluster. We have proposed a model for processing distributed machine learning tasks leveraging both the CPU and the GPU equipped on the nodes. Still in this direction, we present in this paper our approach for optimizing the performance of the previously proposed framework. We then further present our approach for integrating this processing model into a more general dataflow graph processing framework by extending it with support for GPU tasks and resources. In addition we have developed a k-nearest neighbors implementation demonstrating all the features. We then present our model based on flow networks for the efficient scheduling on this heterogeneous framework.

Nam-Luc Tran, Sabri Skhiri, Arnaud Schils, and Egar Isaac Hiroshi Leon Saiki, An Approach for Maximizing Performance on Heterogeneous Clusters of CPU and GPU. EURA NOVA technical series.

Click here to access the paper.

Releated Posts

Insights from GTC Paris 2025

Among the NVIDIA GTC Paris crowd was our CTO Sabri Skhiri, and from quantum computing breakthroughs to the full-stack AI advancements powering industrial digital twins and robotics, there is a lot to share! Explore with Sabri GTC 2025 trends, keynotes, and what it means for businesses looking to innovate.
Read More

Development & Evaluation of Automated Tumour Monitoring by Image Registration Based on 3D (PET/CT) Images

Tumor tracking in PET/CT is essential for monitoring cancer progression and guiding treatment strategies. Traditionally, nuclear physicians manually track tumors, focusing on the five largest ones (PERCIST criteria), which is both time-consuming and imprecise. Automated tumor tracking can allow matching of the numerous metastatic lesions across scans, enhancing tumor change monitoring.
Read More