Master Thesis 2020

This document introduces you to master thesis supervised by our research & development department. Each project offers you the chance to be actively involved in the development of solutions to address tomorrow’s challenges in ICT and implementing them today!

 

If you are interested in one of our offers, please send us your application to career@euranova.eu, including your CV and motivation regarding your top three master thesis subject (described in the document).

If you are interested in working on a topic that is not in our range of offers, we would be delighted to hear your proposition and invite you get in touch.

Master thesis subjects and application guidelines are available here: Master Thesis Offers.

Flink Forward: The Key Takeaways

Early October 2019, 6 EURA NOVA engineers travelled to Berlin to attend the Flink Forward Conference, dedicated to Apache Flink users and stream processing communities.

In this article, they will give you their opinion about Ververica’s’ main announcement, the impact of Ververica acquisition by Alibaba, the big trends, and a selection of their favourite talks.

 

Alibaba!

This is the first Flink Forward conference since the acquisition of Ververica (formerly known as data Artisans) by Alibaba, which has been one of the largest users of Flink and second-largest contributor for years. Our R&D director Sabri Skhiri says: “The only significant impact of this acquisition on the conference is that the venue is now at the Berlin Business Center instead of the Kulturbrauerei. There, we could see that the Apache Flink user’s community has grown significantly as well as their commits on Flink. This edition was a bit more business and enterprise-oriented than previous ones, although it still had its technical DNA and a lot of technical talks. All in all, this was a very good mix. Alibaba folks are deeply committed to open source and creating technology impact. We saw a lot of activities from them such as the integration of the Blink SQL runner, the hive integration or the new scheduling model. In summary, a great event.”

 

First Keynote Announcement

Keynote: Stream Processing and Applications in the Modern Age (Stephan Ewen)

During the first keynote, Ververica took the opportunity to announce the launch of Stateful Functions (statefun.io), an open-source framework built on top of Flink to run stateful serverless functions. It bridges the gap between Function as a Service and stream processing.

Sabri says: ”Last year, they announced their streaming ledger that brings ACID transactions between states to stream processing applications. This year, they announced the launch of Stateful Functions, a framework that reduces the complexity of building and orchestrating stateful applications at scale. In the streaming world, this announcement does not change a lot of things. However, in the microservice community, this opens new doors in terms of design patterns, especially in the way data feeding and stateful operations can be designed more flexibly.”

You can find the video of the presentation here.

 

The Big Trends

1. Unified batch and streaming

A significant trend of this edition is the “Unified Stream and Batch” moto. Our R&D engineer Syrine Ferjaoui says: “Flink currently features different APIs, the DataSet API for batch processing and the DataStream API for stream processing. In addition, the Table API is already a unified API on top of both (DataSet and DataStream) with declarative-style programming. Now, they are working on a solution to unify truly the batch and streaming APIs.”

Sabri adds: “In Flink 1.9, they released the State API with which a state created in batch can be used in a stream application – interesting for bootstrapping/backfilling states. But the community is going further by proposing in Flink 2.0 a unique Data API that will merge DataSet and DataStream while still taking advantage of the batch properties to optimise the execution.”

Every talk was exploring in a way or another how this unification can be pushed forward. For instance, in the Pulsar talk, they were thinking about using Pulsar as a back end to transparently bootstrap a state and then switch on stream using (1) pulsar capability in terms of segment storage and (2) unified data stream API in Flink.”

 

2.”Enterprise-grade” Flink:

Flink is moving clearly toward an “enterprise-grade” technology. Sabri says: “The first signal is that Cloudera adopted Apache Flink into its Data Platform. Also, AWS Kinetics now integrates Flink as a client. Adoption by such big players goes to show that Flink is well on the way to gain enterprise-grade support. The second signal is the release of the Ververica Platform that highly facilitates enterprise-grade operations. Thirdly, the integration of the Hive Metastore with the pluggable catalogue architecture is a significant step towards better governance and metadata management. Finally, there were many talks about lowering the barrier to deploying Flink in prod. The topics included APIs, configuration, memory management, K8S operators, etc.”

 

3.The ML path

Finally, regarding ML/AI, there is still a lot of work to get over the gap with the Spark ecosystem. However, the Alibaba folks are working hard on this topic and we can already see the first results. Sabri says: “The refactoring of the Flink ML interface to work on Flink Table APIs is excellent. There is an excellent vision of integrating Flink as a data prep engine for ML and serving layer; and the roadmap looks great.”

 

Interesting talks

A personal selection by Charles & Christophe of interesting talks to check out :

For Charles, our data architect:

  • Aljoscha Krettek & Timo Walther, respectively a co-founder at Ververica and a PMC member of Apache Flink work on the Flink APIs. They give a summary of recent contributions to Flink’s Table & SQL APIs. It was a very good overview of what is going on in terms of refactoring and where we are going.
  • Roman Grebennikov is a software developer from Findify AB. His talk focused on Flink serialisation framework and common problems happening around it. He illustrated and explained several ways to optimise Flink jobs by taking care of the serialisation, which in most cases represents about 60% of the processing.

For Christophe, our software engineer:

  • Konstantin Klauf is the head of product for the Ververica Platform based on Apache Flink. He discussed Apache Flink worst practices by sharing anecdotes and hard-learned lessons of adopting distributed stream processing. It was a humorous list of general good practices when working with Flink from planning, requirement, deployment, and maintenance.
  • Aaron Levin and Mike Mintz are software engineers in a Stripe’s streaming team. They talked about the many challenges they encountered writing the specialised dual source. This talk was a very well-told story about a simple use case with a high constraint: all-time deduplication of transactions at Stripe (a payment platform‎). It was funny, insightful, full of lessons learned and echoed some of digazu’s features: the history replayer.

 

Kafka Summit: The Key Takeaways

At the beginning of the month, our software engineer Christophe Philemotte was in San Francisco to make a presentation at the Kafka Summit organised by Confluent. The Kafka Summit is one of the main events for data architects, engineers, DevOps, and developers who want to learn about streaming data. In this article, Christophe shares with you the latest trends from the conference.

 

Main observations

This year, one of the most important takeaways at the conference was that Confluent is working towards building an active database with KSQL.

Christophe details: “KSQL is the streaming SQL engine that enables real-time data processing against Apache Kafka. With KSQL, Confluent is embracing the SQL streaming and the integration of its stack into it. They also aim to have the interactivity we already have with a classic database. In short, they are moving towards this new paradigm of active data and passive query where KSQL would make it easy to read, write, and process streaming data in real-time, at scale, using SQL-like semantics. Still, KSQL shouldn’t be chosen over Flink, for instance, without proper consideration of its limitations. For example, real checkpointing and savepoint are missing, as well as global shuffling. There are still constraints on partitioning in some operators and there is no global windowing.”

While talking about SQL streaming, they also mentioned user-defined function or machine learning integration. Find more information on the summit website.

Another interesting point was the shared approaches and themes that were addressed by different companies. For example, 30% of the talks were about the operations. About 5 talks were dedicated to methods how to deploy on Kubernetes, and several other speakers mentioned that deploying on Kubernetes was their target. Real-time analytics, integrations/ETL/DataOps, and of course data pipelines were also often mentioned.

 

Keynotes talks:

During the first keynote talk, Jun Rao, the co-founder of Confluent, looked back at Apache Kafka’s last years and what brought them to where they are today. Christophe says: “One interesting point was the concept of democratising data. They envision Kafka as a one-stop self-service shop for devs, data scientists, etc. Still, the users have to overcome a lot of challenges such as operations, integrations, security, or cold storage. Challenges that we are solving with digazu.”

You can find the video of the presentation here.

Jay Kreps, the CEO of Confluent as well as one of the co-creators of Apache Kafka started his talk by discussing the sentence “Software is eating the world”, by Marc Andreessen. Christophe adds: “The idea is that software must be integrated into an ecosystem of other software. The users are no longer just humans. In some cases, the software will be used almost exclusively by other software.”

Jay Kreps also talked about the new steps for Apache Kafka. He announced that the next release of Kafka KSQL in November will enable users to directly register inputs and outputs thanks to Kafka Connect source and sink connectors. They are also working on better interactivity that will allow users to see the results more quickly in the KSQL CLI.

You can find the video of the presentation here.

 

Our Favourite Use Cases:

Kafka on Kubernetes: Keeping It Simple (Nikki Thean)

Nikki Thean is a staff engineer at Etsy, where she helps deploying Kafka at Etsy. She talked about Etsy’s Cloud Migration and how running Kafka on Kubernetes was the best option for them and was not half as complicated as they thought it had to be. Christophe explains: “At the DataWorks Summit in Barcelona, the message was that K8S resource management was not yet ready to replace YARN. We now see that K8S is the new YARN for many people who are using it to deploy their cluster. For example, Etsy or Confluent Cloud.”

In her talk, Nikki Thean explained how a Kafka-on-K8S setup works. Christophe explains: “The main lessons from her talk are:

  • We can start simply without an operator.
  • We must pay attention to the Kubernetes liveness and readiness probes. They can be used to make a service more robust and more resilient since K8S can restart them if necessary. However, if these probes are not configured carefully, they will kill the brokers unnecessarily.
  • Considering the price to deploy in multiple zones on Google Cloud Platform, a good solution is to deploy at least Zookeeper (the most critical element of the cluster) on multiple zones. Given the low flow of data, it will not be too expensive and Zookeeper will allow identifying which Kafka node has the data.”

You can find the video and the slides of the presentation here.

 

Mission-Critical, Real-Time Fault-Detection for NASA’s Deep Space Network using Apache Kafka (Rishi Verma)

Rishi Verma is a manager at the NASA Jet Propulsion Laboratory. He talked about the new software system being deployed by NASA to upgrade its Deep Space Network (DSN) that operates spacecraft communication links for NASA deep-space spacecraft missions. Christophe says: “It was a super interesting use case! The DSN Complex Event Processing (DCEP) software assembly is a new software system that brings into the DSN next-generation “Big Data” infrastructural tools to do IoT with their legacy assets. The objective is to correlate real-time network data with other critical data assets (in their example, an old radio antenna). They recover all the data on Kafka, then they process it and then they predict signal loss on the basis of weather conditions.”

You can find the video and the slides of the presentation here.

 

 

Cross the Streams Thanks to Kafka and Flink (Christophe Philemotte)

Christophe is the CTO of digazu, the batch and real-time data sharing platform developed by EURA NOVA. In his talk, he explained how you could build a similar data platform and how you could plug Flink into the Kafka ecosystem, as well as what the common pitfalls are and what Flink requires to be deployed on Kubernetes.

Christophe says: “The feedback was positive and I received a lot of questions during the Q&A session and after the talk, notably about Flink vs KSQL vs Spark. Another question that I received a lot is when to use Table, SQL or DataStream API. My answer was that Table and SQL APIs are two different flavours of the same API. The Table API you have a LINQ experience while with the SQL API you have a SQL experience. They are both perfect for data processing that can be expressed simply in SQL. That means in a lot of cases. The DataStream API is a lower-level API compared with the Table and SQL APIs. It gives more control on what you can do, which means it also requires a thorough understanding of Flink core mechanisms. Going for the DataStream API is usually a good choice either when your stream processing cannot be expressed in SQL and requires specific implementation, or when you need to optimise the processing.

The sandbox provided was also very popular.

You can find the video and the slides of the presentation here.

 

Our Favourite User Practice:

 

Please Upgrade Apache Kafka. Now. (Gwen Shapira)

Gwen Shapira is a software engineer at Confluent working on core Apache Kafka. She reviewed all the recent releases and made suggestions on how to de-risk upgrades.

Christophe says: “Gwen Shapira talked about why it is essential to upgrade even though it is risky and time-consuming. She explained that each new release fixes from 30 to 140 bugs and listed the improvements you will get from upgrading”. Among them:

  • The Apache Kafka team is working on improvement to build a reliable replication. For example, watermarking has been improved greatly.
  • They are working on controller design towards the removal of Zookeeper.
  • Finally, some releases are critical for specific reasons (e.g. proper resolution of IP when you work with K8S, JBOD, or EOS).

 

In the second part of her talk, Gwen Shapira made suggestions to upgrade as safely as possible. Christophe explains: “She recommended to take good care of backup configuration and documentation. Regarding documentation, she recommended to read the list of notable changes, to act upon text in bold font, and once you have finished reading, to go over it all again!”

Christophe’s last word? “Be sure to check out slide 35: it lists the ways how not to upgrade!”

You can find the video and the slides of the presentation here.

4th Workshop on Real-time & Stream Analytics in Big Data

EURA NOVA Research centre is proud and excited to organize the fourth workshop on Real-time and Stream analytics in Big Data, collocated with the 2019 IEEE conference on Big Data. The workshop will take place in December in Los Angeles, USA.

Stream processing and real-time analytics in data science have become some of the most important topics of Big Data. To refine new opportunities and use cases required by the industry, we are bringing together experts passioned about the subject. 

This year, we are excited to have two amazing keynotes from Confluent KStream and Apache Pulsar: 

  • Matteo Merli is one of the co-founders of Streamlio, he serves as the PMC chair for Apache Pulsar and he’s a member of the Apache BookKeeper PMC. Previously, he spent several years at Yahoo building database replication systems and multi-tenant messaging platforms. Matteo was the co-creator and lead developer for the Pulsar project within Yahoo.
  • John Roesler is a software engineer at Confluent and a contributor to Apache Kafka, primarily to Kafka Streams. Before that, he spent eight years at Bazaarvoice, on a team designing and building a large-scale streaming database and a high-throughput declarative Stream Processing engine.

 

If you want to join us, authors from the industry and the academia are invited to contribute to the conference by submitting articles. Check out the workshop website to find all the information you will need. Your paper will be reviewed by a prestigious panel of international experts from both the academic and the industrial worlds.

 

ACL 2019: Takeaways from the conference

Last month our R&D Project Director Cécile Pereira and our PhD student Léo Bouscarrat travelled to Florence to attend and present to ACL 2019. ACL is one of the biggest conferences in Natural Language Processing. This year all the records were broken with more than 3500 attendees, 660 accepted papers to the main conference, 9 tutorials and more than 20 workshops. All the talks of the main conference were recorded and are accessible online. In this article, Cécile and Léo share with you the latest trends from the conference!

 

 

Big trends

 

A new paradigm in NLP?

This year, ACL’s selection of topics has shown the importance that has taken self-training methods such as BERT (Devlin et al., 2019) or XLNet (Yang et al., 2019). These methods consist of feeding huge models with a vast amount of data and then train them on easy tasks (for example, predict masked words in the original sentence or predict if two sentences are following each other).

These models should be able to learn faster and with less data on a more specific and complex task. With this method, the way to train a model to solve an NLP task has changed. Here is this new paradigm:

  1. Select a pre-trained model (trained with self-training)
  2. Add a layer on the output of this model (it will depend on your task) and fine-tune the model by giving the inputs and outputs of your task
  3. Evaluate your model

Many papers were using this paradigm to achieve state of the art on several tasks (out of the 660 papers of the main conference, 47 have the word BERT in their abstract).

Contextual embeddings, like BERT, take into account the context of the sentence into the embeddings of the words. BERT can be used for a large variety of tasks including but not limited to classification (Reimers et al., Chalkidis et al.), named entity recognition (Arkhipov et al., Emelyanov and Artemova) and question answering (Li et al., Liu et al.).

So it is working. But the remaining question is why?

Several presentations discussed the explainability of BERT (for example Jawahar et al. and Clark et al.). Those papers discuss that, as the different layers are learning different things, the different heads seems to specialize in certain types of words or certain syntactic or semantic task.

The conference highlighted the need for adversarial training and testing as those models are very good to learn bias in the dataset (Niven and Yao, Jiang and Bansal). For those not familiar with the concept, adversarial training and testing consist to train and/or test on an adversarial dataset. This dataset is composed of examples, often generated ones, where the model fails to predict the correct answers. Adversarial training is generally used to verify if the models learn bias in the dataset (like the negation in Niven and Yao). It can also improve the quality of the models.

 

Improving the experiments in NLP

Several presentations showed that adversarial training can improve the results and robustness of the model (Zhu et al and  Jiang and Bansal, Mohit Bansal slides available here).

The meeting was also a moment to discuss the impact of the use of standard splits on benchmark data.  Standard split means that, if you want to work on a specific task, you will generally look for the training, validation and test splits used in other publications and use the same.

However, Gorman and Bedrick argue that the use of random split should be preferred. They explain it by trying to reproduce the results of nine part-of-speech taggers on a specific dataset. They reproduced the same rankings on the standard splits. However, when they did it on random splits, the ranks of the taggers, considering the same metric, varied.

This showed that getting a better ranking on a specific split doesn’t mean that you are better in general. Since in some fields of research, the improvements between each paper are small, the use of standard split does not guarantee that a model is really better than another one on the task.  Random splits could improve this by adding a notion of variance on the performances.

 

Domain adaptation

The last trend in NLP consists of using models or embeddings learned on huge datasets of general data from sources such as Wikipedia, books or newspapers.

When you want to work on specialised domains such as the biomedical, legal or financial domains, you need specialised embeddings. However, you generally don’t have enough specialised data to re-train the embeddings or the models.

A solution is to use and modify pre-trained models for your specific task. This is called domain adaptation. There are several ways to do it. For example, Boukkouri et al combined a general embedding and a smaller one learned on their domain. Hu et al fine-tuned a general model on their data. These methods allow using recent models (which needs a lot of data) on some specific domains that do not fit those requirements.

 

 

Trendy topics

 

Machine translation

Machine translation is still a huge topic with no less than 46 papers in the main conference (according to the ACL 2019 chair blog post), an entire two-days workshop dedicated to it and Liang Huang invited talk. Liang Huang is a principal scientist of Baidu Silicon Valley AI Lab who talked about the current state of simultaneous translation and Baidu research’s new approach.  They were able to do an English/Chinese translation with 3 seconds of delay only. The demo is available here: https://simultrans-demo.github.io/. One can also notice that the ACL best long paper award was on this topic (Zhang et al.)!

 

Conversational systems

Conversational systems (also called chatbots) were also a trendy topic, with 52 papers, a workshop, and the invited talk from Pascale Fung.

Pascale Fung is a Professor at the Hong Kong University of Science & Technology. She presented the state of the art of conversational systems. For her, recent advances are going in three directions: learning to memorise, learning to personalise and learning to empathise.  She presented her current work on conversational systems that can empathise, showing that improvements have been made but there is still work to do. She ended with questions about the ethics of this sector: how can we build systems that are secure, safe and fair for all?

 

Knowledge graph

Knowledge graphs are also pretty trendy, they seem to be a good way to add knowledge to models. It can be used for Question-Answering or Conversational systems. The blog post of Michael Galkin makes a review of the most interesting articles in this sector.

 

Bias in NLP

After recent papers showed that models in NLP are biased (Bolukbasi et al., 2016 ; Caliskan et al, 2017) there is more and more work on what we can do about that, reflected by a session and a workshop during the meeting (https://genderbiasnlp.talp.cat/).

Several works about removing gender bias from models have been previously published. But the work of Gonen and Goldberg explains that, for now, it’s only “Lipstick on a pig”.

We observed two main areas on the topic. Firstly, removing/controlling gender bias in the models (like in automatic translation, Habash et al., Escudé Font et al., Ik Cho et al.). Secondly, measuring bias in the models and society (with articles proposed by sociologists, like Karve et al., Hitti et al., Basta et al., Kurita et al.).

 

Summarization

There were several papers about summarization (including our own paper https://arxiv.org/abs/1907.07323) which have been summarized by RecitalAI on their GitHub.

 

 

Conclusions

ACL was a great place to measure the trends in the NLP field. As models are becoming better, data scientists are applying them to a large variety of topics including automatic translation, search engine, and chatbots.

As the NLP community and topics are becoming bigger and bigger, we hope that this summary of our biased takeaways from the meeting could help you navigate the nearly 700 ACL papers of this year.

 

STRASS: A Light and Effective Method for Extractive Summarization

This paper introduces STRASS: Summarization by TRAnsformation Selection and Scoring. It is an extractive text summarization method which leverages the semantic information in existing sentence embedding spaces. Our method creates an extractive summary by selecting the sentences with the closest embeddings to the document embedding. The model learns a transformation of the document embedding to minimize the similarity between the extractive summary and the ground truth summary. As the transformation is only composed of a dense layer, the training can be done on CPU, therefore, inexpensive. Moreover, inference time is short and linear according to the number of sentences. As a second contribution, we introduce the French CASS dataset, composed of judgments from the French Court of cassation and their corresponding summaries. On this dataset, our results show that our method performs similarly to the state of the art extractive methods with effective training and inferring time.

Léo Bouscarrat, Antoine Bonnefoy, Thomas Peel, Cécile Pereira, STRASS: A Light and Effective Method for Extractive Summarization Based on Sentence Embeddings, in 2019 ACL Student Research Workshop, Florence, Italy.

Click here to access the paper.

Florence, Italy

DEBS 2019: A Summary

Last month, our R&D engineer Anas Albassit and director Sabri Skhiri travelled to Germany to attend and present at DEBS 2019, one of the most specialised conferences in Distributed Event-Based Systems. DEBS has a long history: from active databases to streaming engines, distributed publish-subscribe systems, etc. it has always been the pioneer of distributed and high-performance systems. In this article, Anas and Sabri share with us what they learned there and what struck them as particularly useful.

 

Big Trends

 

This edition focused around streaming language, scheduling, elasticity, distributed event processing, platform and middleware. Our R&D director Sabri Skhiri says: “For someone working in distributed computing and data management, DEBS is one of the major conferences with SIGMOD and VLDB. Even though it is quite small (80 participants vs 1000 for IEEE Big Data), this is a niche conference of experts from a small yet amazingly talented community of researchers. The keynotes were just great, with a good balance between pure research and industry. This conference tackling distributed computing and streaming is heaven for data scientists and architects like us!”

 

 

Keynotes

 

Open Problems in Stream Processing: A Call To Action (Tyler Akidau)

 

Tyler Akidau is the technical lead for the Data Processing Languages & Systems group at Google. He argues that, even though stream processing has gone from niche to mainstream, this is just the beginning. For him, the need for active exploration of new ideas is all the more pressing. Sabri reacts: “The stream has been there for 30 years. We have Spark, Flink, Dataflow, KStream, MSF Trill. But is it all we can do? Is there nothing to do anymore? Tyler Akidau brilliantly presented that stream processing as a field of research is alive and well.”

The talk was mainly about raising opened or partially opened questions in the streaming world.

  • Firstly, the evolution of a pipeline over time may require changes in the persisted state. In that case, how to gracefully update everything online without stopping the working pipeline? How can we auto tune or auto build optimised systems? Do we need to rethink the way we build such systems now?
  • Secondly, Tyler Akidau moved on the importance of SQL in streams and the missing parts to fill there. One of the main topics was the mathematical formalisation of streaming operators, in addition to providing richer standards and clarifying the ambiguities coming from the nature of the streams like out of order events and latency.
  • The next point focused on the tradeoff triangle between latency, costs and correctness. How to figure out what do we need? How to describe correctly every term from a system-behaviour point of view? Is it possible to prioritise different factors depending on the urgency of some task (e.g. streaming v.s batch) automatically?
  • Last but not least, how can we improve stream processing? What kind of database optimisations can be adopted here, and can we think of more optimisations that can only apply on streams?

 

Tyler Akidau concluded by pointing out that even though streaming systems are more capable and robust than ever, they often remain difficult to use, difficult to maintain, and difficult to understand.

[EDIT] Thank you Tyler for reaching out and for sharing your slide with us! They are available on the following link. If you would like to discuss more insights from the talk, do not hesitate to contact our researchers at research@euranova.eu.

 

 

Interesting Papers

 

STRETCH: Scalable and Elastic Deterministic Streaming Analysis with Virtual Shared-Nothing Parallelism (Hannaneh Najdataei)

 

Hannaneh Najdataei, Researcher and PhD Student at the Chalmers University of Technology in Sweden, presented her framework STRETCH.

Anas explains: “The performance of a streaming engine depends on the throughput and latency of stateful analysis. To achieve the best performance, we need to process a large amount of data (i.e. to be scalable) while handling fluctuations in data rate (i.e. to be elastic). Distributed processing requires the ability to parallelise the processing elastically. Optimally, we should reduce the number of parallel operators when the workload decreases and add operators when more resources are needed. For stateful operators, elasticity reconfigurations require to redistribute the states according to the new cluster configuration (i.e. less or more operators). In this case, we need to find a tradeoff between a share-nothing and a share-all state architecture.”

Sabri adds: “The paper proposes STRECH, a virtual share-nothing parallelism concept that does not require state transfer. The idea is that all workers read the same sequence of input tuples through an intra-node streaming framework. What is surprising in this paper is the parallelism model: all workers get the same sequence of tuples to guarantee the deterministic execution of the stream. On the contrary, in streaming, you usually have a distribution of your tuples per key. Still, they have obtained impressive results matching the throughput and latency figures of the front of state-of-the-art solutions, while also achieving fast elastic reconfigurations.”

To know more about the STRETCH framework, you can find the slides of the presentation here and the paper here.

 

Uncertainty-Aware Event Analytics over Distributed Settings (Nikos Giatrakos)

 

Nikos Giatrakos is a PhD researcher from the Technical University of Crete. He presented his work to do uncertainty-aware event analytics. Sabri reacts: “Getting high performance by sampling the input stream and sacrificing a bit of the result precision is the new trend in research. The idea is to parse only some of the events to be able to handle a bigger load, but still controlling the level of uncertainty you have on the result. I see 2 great applications: (1) get approximated results when needed but also (2) proactive detection before events happen.”

While the idea of filtering by controlling the probability of the error is not new, the paper had several novel points:

  • The decomposition of the error into filters from a pattern matching query
  • The conditional probability assertion for a wide range of aggregation functions
  • A central coordinator for calculating the global PDF and then detecting the pattern

To know more about his paper, you can find the slides of the presentation here and the paper here.

 

LEAD: A Formal Specification For Event Processing (Anas Al Bassit)

 

On the fourth day of the conference, our R&D engineer Anas presented his paper proposing a formal specification for CEP language.

Processing event streams is an increasingly important area for modern businesses aiming to detect and efficiently react to critical situations in near real-time. Due to CEP languages’ limitations and imprecise semantics, describing interesting situations remains challenging. In this paper, Anas presents a formal specification for processing complex events. The paper provides an algebra that consists of a set of operators for constructing complex events (patterns), temporally restricting the construction process and choosing among several selection and consumption policies.

To know more about his paper, you can find the slides of the presentation here and the paper here.

 

 

Tutorials

 

Correctness and Consistency of Event-based Systems  (Opher Etzion)

 

The second day of the conference was dedicated to tutorials from experts in the field. Anas gives insights into his favourite training: Correctness & Consistency of Event-Based Systems. He explains: “The speaker was Opher Etzion, one of the pioneers in the domain of event processing. The tutorial lasted for about 4 hours. What is interesting is that the speaker demonstrates with examples that building an event-based system is not trivial. Even more, a lot of existing systems are incorrect and give inconsistent results due to some problems in their semantics. To ensure correctness, you have at least to understand the sources of latencies in your system and ensure fairness between all the agents, in addition to defining a set of policies to tell the system when, how, where and what events you are looking for.”

LEAD: A Formal Specification For Event Processing

Processing event streams is an increasingly important area for modern businesses aiming to detect and efficiently react to critical situations in near real-time. The need to govern the behaviour of systems where such streams exist has led to the development of numerous Complex Event Processing (CEP) engines, capable of detecting patterns and analyzing event streams. Although current CEP systems provide real-time analysis foundations for a variety of applications, several challenges arise due to languages’ limitations and imprecise semantics, as well as the lack of power to handle big data requirements. In this paper, we discuss such systems, analyzing some of the most sensitive issues in this domain. Further, in this context, we present our contributions expressed in LEAD, a formal specification for processing complex events. LEAD provides an algebra that consists of a set of operators for constructing complex events (patterns), temporally restricting the construction process and choosing among several selection and consumption policies. We show how to build LEAD rules to demonstrate the expressive power of our approach. Furthermore, we introduce a novel approach of interpreting these rules into a logical execution plan, built with temporal prioritized coloured petri nets.

Anas Al Bassit, Skhiri Sabri, LEAD: A Formal Specification For Event Processing, in 13Th ACM international Conference on distributed and event-based systems 2019

Click here to access the paper.

Coherence Regularization for Neural Topic Models

Neural topic models aim to predict the words of a document given the document itself. In such models, perplexity is used as a training criterion, whereas the final quality measure is topic coherence. In this work, we introduce a coherence regularization loss that penalizes incoherent topics during the training of the model. We analyze our approach using coherence and an additional metric – exclusivity, responsible for the uniqueness of the terms in topics. We argue that this combination of metrics is an adequate indicator of the model quality. Our results indicate the effectiveness of our loss and the potential to be used in the future neural topic models.

The paper will be published at the 16th International Symposium on Neural Networks taking place in Moscow. In the meantime, do not hesitate to contact our R&D department at research@euranova.eu to discuss how you can leverage neural topic models in your projects.

Katsiaryna Krasnashchok, Aymen Cherif, Coherence Regularization for Neural Topic Models. in 16th International Symposium on Neural Networks 2019 (ISNN 2019)

Click here to access the paper.

DataWorks Summit: the big trends

Last month, four EURA NOVA engineers travelled to Barcelona to attend the Dataworks Summit. The conference is organised by Hortonworks, now known as Cloudera and it is about how to apply open source Big Data technology to accelerate digital transformation initiatives. They came back with a lot to say about the hot topics in AI, machine learning, architecture, the cloud, and the use cases! In this article, they share with us what they learned there and what struck them as particularly useful.

 

Big Trends

 

Data architecture

This year, one of the most important trends at the conference was data management and data architecture. Our R&D director Sabri Skhiri says: “There was a real focus on taking data lakes to their next stage and on making them actionable for AI and machine learning. The notion of data hubs was often mentioned, notably during the keynote speeches by Cloudera, IBM, and Pure Storage. However, most of the vendors of platforms have not been able yet to provide a fully-fledged ecosystem that allows the exploration, governance, and industrialisation of big data”.

AI industrialisation

This brings us to the second motto of the conference: AI industrialisation is a must. Our data engineer Khalil Amdouni explains: “The conference has been migrating towards AI topics. In the past, the conference used to focus mostly on data ingestion and data processing. It has been moving towards data science. Everyone is talking about AI and machine learning and how to put data science models into production. It’s looking into how to move from data exploration to industrialisation; we heard a lot about Cloudera’s Data Science Workbench etc.”

Production environment

The third trend of the conference was the separation between data processing tools and AI frameworks. Khalil explains: “Spark, Cloudera, Kubernetes are now all providing production environments (data science management platforms such as Cloudera Data Science Workbench, the Databricks Runtime ML, Kubeflow…) to integrate with machine learning frameworks such as Tensorflow or Python. Sabri adds: “This is interesting but we should first speak about “productisation”, data science models lifecycles, continuous integration and delivery. There are still a lot of shortcomings, like the fact that you need to centralise all your data in one partition before starting your favourite AI framework”.

Data governance

Another hot topic of the conference was data governance and compliance with regulations. Our R&D director goes on to say: “Everybody is speaking about the importance to be GDPR compliant and is proposing tools like Atlas, Egeria, IBM Infosphere, … but no one says how to actually comply with the GDPR during model deployments or how to deal with access policy management.”

 

 

Favourite Talks

 

Stream, Stream, Stream: Different Streaming Methods with Spark and Kafka

Itai Yaffe presented the journey made by Nielsen’s Marketing Cloud division to provide its customers with real-time analytics tools to profile their target audiences. To achieve its goal, NMC needed to continuously transform its data infrastructure to ingest billions of events per day in a scalable and yet cost-efficient manner.

Sabri says: “The first version of NMC’s architecture includes CSV files and standalone Java applications with an OLAP database to expose the result. To reach their goal, NMC’s teams had to scale the process up to handle 10 times as much data”.

Their first step was to change the architecture: they moved to Kafka to ingest data, they leveraged Spark to stream and to aggregate data, and they used HDFS to store data.

Sabri explains: “The issue here was that they had to manage the statefulness of the Spark applications on HDFS by themselves. In addition, the system was error-prone in case of failure. They tried again and looked into Spark Structured Streaming, then tried to combine Spark Streaming with batch ETLs and finally decided to use Kafka to imitate streaming over their data lake. This evolution made the situation really interesting from a business and architectural point of view. Their business goal is to support decision making with machine learning to deliver reports on campaigns. Over the years, they adapted their architecture to go further and reach that objective”.

Our architect Cyrille Duverne adds: “Their story showed how much effort is required to build a long-term architecture. Tools are not enough; you first need the use cases that lead to an architectural vision. Only then can you choose the tools that will support the vision.  To build this architecture, you need time and people with the right skills”.

To know more about NMC’s journey, you can find the slides of the presentation here.

 

Federated Learning

Chris Wallace is a data scientist at Cloudera Fast Forward Labs. He presented how his team leveraged federated learning to predict maintenance problems when customers of a manufacturer are not willing to share with the manufacturer the details of how their components failed, but want the manufacturer to provide them with a strategy to maintain the faulty parts.

Our architect Cyrille Duverne explains: “In this case, federated learning is a kind of distributed deep learning where you train the model on decentralised data. The main idea is that a network of nodes shares models rather than training data with the server. Each node has the untrained model that they will train using the data they have. Each node then sends a copy of its trained model back to the central server that will take the average and send the new model to the different nodes. The process is repeated until the final version of the model is reached.”

Our data scientist Malian De Ron explains: “I find federated learning very interesting. As data scientists, we can work directly on updating models, but we don’t have access to all the training data. Federated learning can be useful for use cases where the customers want to keep their data anonymous. For example, we work for a financial company that works with a bank. Neither of them is willing to share their data. By using federated learning, the training data could remain in its original location, which could satisfy our customer’s privacy concerns.

To know more about federated learning, you can find the slides of the presentation here.

 

Data governance with Egeria: The industry’s first open metadata standard

John Mertic is the director of program management for ODPi, the Linux Foundation’s Open Data Platform initiative. He talked about their new open metadata standard Egeria, introduced in September. John Mertic explained how the standard supports the free flow of standardised metadata between different technologies and vendor platforms, enabling organisations to locate, manage, and use their data resources more effectively.

Sabri says: ”Companies have 40 years of evolution embedded in their IT systems, resulting in high complexity of data lineage and data silos. In the complex new world of big data and real time, security models have to track data throughout the organisation. This is why data governance and metadata management are hot topics in conferences. Everybody is talking about it and proposes tools such as Egeria, IBM InfoSphere, or Atlas. I talked with IBM InfoSphere people and I had an overview of the Egeria tool. It can be used to federate the IBM InfoSphere Information Governance Catalog, Apache Atlas and even other Egeria cohorts. The IBM Governance Catalog can pull information directly from Egeria and integrate the metadata, the lineage, and even tags from Atlas”.

To know more about Egeria, please find the slides of the presentation here.

 

 

Final Thoughts

 

When working with clients as they make their journey to the new digital world, we noticed recurrent problems in the areas of data access, usage, and governance. In many conferences, we hear stories of companies facing these challenges and making a lot of ad hoc choices but lacking a long-term architectural vision. To crack the challenges, our R&D director Sabri Skhiri designed the Data Architecture Vision (DAV), which later led to digazu.

The Dataworks conference highlighted the need to take data lakes to their next stage. The digazu platform, with its integrated and managed data lake, meets that need. It is a true data hub that integrates real-time and batch dataflows, that collects data from multiple sources, stores it, and distributes it to applications and users across the whole organisation.

Another need mentioned at the conference was that of providing companies with production environments to deploy models. Leveraging ever-increasing amounts of data to provide new services or solve problems requires increasing resources in terms of expertise, time and money. digazu offers a scalable way to keep data pipelines open for business in real time or batches without an army of data experts, lines of code, or complex training.

A third need highlighted at the conference is for companies to reach good data governance. There are already excellent governance tools such as Atlas, Egeria, IBM Infosphere to support the free flow of standardised metadata. digazu opens the door to automated regulatory compliance by providing ready-to-use connectors to data management and governance tools.

To learn more about digazu, visit digazu.com