Skip to content

Measuring elasticity for cloud databases

The rise of the Internet and the multiplication of data sources have multiplied the number of “Bigdata” storage problems. These data sets are not only very big but also tend to grow very fast, sometimes in a short period. Distributed databases that work well for such data sets need to be not only scalable but also elastic to ensure a fast response to growth in demand of computing power or storage. The goal of this article is to present measurement results that characterize the elasticity of three databases. We have chosen Cassandra, HBase, and mongoDB as three representative popular horizontally scalable NoSQL databases that are in production use. We have made measurements under realistic loads up to 48 nodes, using the Wikipedia database to create our dataset and using the Rackspace cloud infrastructure. We define precisely our methodology and we introduce a new dimensionless measure for elasticity to allow uniform comparisons of different databases at different scales. Our results show clearly that the technical choices taken by the databases have a strong impact on the way they react when new nodes are added to the clusters.

Thibault Dory, Boris Mejías, Peter Van Roy, and Nam-Luc Tran, Measuring Elasticity for Cloud Databases, proceedings of the Cloud Computing 2011 (Second International Conference on Cloud Computing, GRIDs, and Virtualization), Rome, Italy, September 2011.

Click here to access the paper.

Releated Posts

Insights From Flink Forward 2024

In October, our CTO Sabri Skhiri attended the Flink Forward conference, held in Berlin, which marked the 10-year anniversary of Apache Flink.  This event brought together experts and enthusiasts in the
Read More

Internships 2025

You are looking for an internship in an intellectually-stimulating company? are fond of feedback and continuous personal development? want to participate in the development of solutions to address tomorrow’s challenges?
Read More